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Abstract 

This Lecture Series will present and discuss the scientific problems of modern mathematical simulation of gas turbine engines 
and their components. 

Some peculiarities of complex multicomponent and multidisciplinary models for whole flow passages of bypass gas turbine 
engines, core, multistage compressors and turbines, and other engine components will be studied. 

Solutions of steady and unsteady problems are given using high efficiency monotone numerical methods and the theoretical 
bases of these methods are presented. 

Many practical results of aerodynamic and thermostress simulations for engine components are shown. These results are 
compared widely with experimental data for accurate verification of developing computational codes. 

This Lecture Series, endorsed by the Propulsion and Energetics Panel of AGARD, has been implemented by the Technology 
Cooperation Programme. 

Abrege 

Ce cycle de conferences presente et expose les problemes scientifiques poses par les modeles mathematiques des 
turbomoteurs et de leurs organes. 

La conference etudiera certaines particularites des modeles complexes multicomposants et multidisciplinaires de toute la 
partie de l'ecoulement des moteurs ä turbine, des modeles de compresseur ä plusieurs etages, de turbines ä plusieurs etages et 
d'autres composants. 

Les solutions des problemes stationnaires et instationnaires, qui sont obtenues ä l'aide des methodes numeriques 
monotoniques et les bases theoriques de ses methodes sont presentees. 

Bon nombre de resultats de simulations aerodynamiques et de contraintes thermiques des moteurs et des composants sont 
presentes. Ces resultats sont compares avec des donnees experimentales pour la verification des codes numeriques 
developpes. 

Ce cycle de conferences est präsente dans le cadre du Programme de Cooperation Technologique (NACC/PfP), sous l'egide 
du Panel de Propulsion et d'Energetique de 1'AGARD. 
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Introduction and Overview 

by 
Prof. M. Ja. Ivanov, 

CIAM (Central Institute of Aviation Motors) 
2, Aviamotornaya St., 

Moscow, Russia, 111250 

Introduction 

Gas turbine engines development is directed at 
thermodynamic cycle parameters growth and the 
improvement of efficiency, capability and economy. For 
example, in advanced aircraft gas turbine engines in 
comparison with modern engines the specific weight 
will be 1.5+2 times less and the efficiency will be 30+40 
% better. The gas temperature in combustion chambers 
of advanced engines must increase by 300 to 400 
degrees. The design of these engines demands detail 
understanding of physical processes in all components 
and whole engine. Key fundamental enabling 
technologies include advances in mathematical 
modeling and computational tools. The long time and 
high cost of gas turbine engines design may be 
decreased essentially by wide application of numerical 
gas dynamics, heat transfer, strength and burning 
processes simulations. 

Until recently, the use of numerical simulation in 
gas turbine technology development was limited mainly 
by analysis and recommendations for improving the 
characteristics of individual engine components. 
Examples include isolated blade rows or stages of fans, 
compressors and turbine, intakes, nozzles and others. 
The current level of development and practical 
application of gas turbine components simulation is 
presented, for example, in the observed papers [1-5]. 
Based on this level of achievement, the next phase of 
mathematical modeling will certainly include simulation 
of whole gas turbine engines or large multicomponent 
parts (as example, model of aircraft turbofan total flow 
passages [6]). 

The next development phase will also involve 
solving closely related multidisciplinary problems for 
individual components of gas turbine engines. In such 
problems simulation will include simultaneously 
aerodynamics, heat-transfer, thermal-stressed, 
combustion processes, and so forth. Here the typical 
problem may be the thermal-stressed state of a high 
temperature turbine rotor, where the external viscous 
flow near blades, the internal cooling air flow into 
blades, thermal and stressed state of blades are solved 
simultaneously [7]. 

An examination of the current state of fluid 
dynamics computational methods may reveal trends for 

the immediate future in this field. The present move 
seems to be toward a transition to monotone 
conservative high order accuracy methods for 
integration of Euler and Navier-Stokes equations, which 
describe ideal and viscous gas flows. As a typical 
example, we can indicate AGARD Lecture Series 
No. 140 [8], which contains 3D computational 
techniques applied to internal flows in propulsion 
systems up to the middle 1980s. There were widely used 
numerical schemes of non high order of accuracy (the 
first and the second orders). The second order accuracy 
methods give oscillated solutions in regions of great 
parameter gradients. In present the Lecture Series only 
monotone high order accuracy methods are a lied to 
solutions of internal flow problems in propulsion 
systems. 

Foundation for the theory of the monotone 
difference schemes were laid down by the Russian 
scientist S. K. Godunov in the late 1950s and the first 
stage of their development was presented in monograph 
[9]. Lately the term "TVD schemes" (Total Variation 
Diminition schemes) has been used to designate the 
monotone difference schemes. In the next lecture we 
present a more strict class of following methods, which 
satisfy additional conditions [5]. Highly accurate 
conservative difference methods now form the basis for 
constructing many effective algorithms and codes that 
solve practical internal and external aerodynamic 
problems. 

In order to determine the advantages and 
shortcomings of the computational algorithms and codes 
being developed, it is necessary to test their 
serviceability and make careful comparisons with 
experimental data using standard model problems. Such 
verification must accompany any publication of 
numerical results and codes. Below we'll present this 
verification for all developing computational techniques. 

Another factor affecting numerical simulation is the 
progress and widespread use of high efficient 
supercomputers. Until recently computational 
techniques development was constructed mainly by the 
availability of the efficient computational tools that, as a 
rule, are concentrated in large scientific research centers 
that grant only limited access. But the growing 
availability of highly efficient minicomputers, as well as 
personal   computers and work stations with the latest 
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personal computers and work stations with the latest 
RISC processors, allows us to consider new possibilities 
in the development and application of numerical 
simulation without the need for resorting to 
supercomputers centers. 

The achieved progress of numerical simulation and 
computer development allows to consider the 
mathematical modeling of gas turbine engines from the 
new positions. The gas turbine engine simulation gets 
on initial stage to obtain the large information for 
engine performances on steady and transient regimes. 
The steady regimes simulation includes 
thermodynamics cycle calculations, the equilibrium 
running line prediction, the flow passage design and the 
definition of thrust-economic, mass and cost 
characteristics. The transient regimes simulation 
includes the definition of times and performances of 
unsteady process (start, acceleration, throw off and oth.) 
by given regulation laws. The depth and completeness of 
gas turbine engine components presentation and 
interaction define the level of corresponded 
mathematical model. Conditionally the followed gas 
turbine simulation levels (table 1) can be defined. 
The zero level corresponds to description of engine 
parameters and performances with help of tables, formal 
approximations and statistic dependencies. This level 
presents interest only for problems, where gas turbine 
engines have been included as one of subsystem for 
more complex system (for example, for performance 
investigation of whole aircraft). 

The first level corresponds to ID description of 
connections between engine components and engine 
geometry with help of integral balances of mass flows, 
powers, etc. Here it's worth to differ steady and unsteady 
models. Steady models of the first level simulation were 
presented in monographs [10,11] and papers [12,13]. 
Simple unsteady models of the first level were described 
also in papers [12,13]. More accurate unsteady models 
based on Euler equations with turbomachines 
presentations as active and passive whirl discs were 
considered in papers [14-16]. 

The second level corresponds to 2D description of 
the connections between engine components and engine 
flow passage. A few models must be defined in more 

details. One of them is the flow passage model on <S2 

surface (as the traditional turbomachinery definition). 
This model bases on unsteady averaged along circular 
direction 2D Euler equations includes real effects of 
viscous losses, leakages and a selection of blowing out 
of cooling air as source terms in the right parts of 

equations. Another is the flow passage model on 5, 
circular surface in various thickness layer, base also 
on unsteady averaged along radial direction 2D Euler 
equations with the same real effects. The second 
level of gas    turbine engine    simulation     included 

the    similar   models     on S2 and   5,    surfaces, 

The levels of gas turbine engine mathematical models 

0 level 

1 level 

tables, formal approximations, statistics 

1D steady models 

2D - Euler - Sf with fosses 

II  level 
2D - Euler • S2 with losses 

1D unsteady models 

2D - Navier-Stokes - Si 

2D - Navier-Stokes - S2 

3D - Euler with averaging 
in axial clearances 

III  level 
3D - Euler without any 

averaging 

3D - Navier-Stokes with 
averaging in axial clearances 

3D - Navier-Stokes 
without any averaging 

Table 1 
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averaged along circular and radial direction. 
The third level corresponds to 3D description of the 

connection between engine components and engine flow 
passage. It bases on the integration of Euler and Navier- 
Stokes equations. Here there are differed the just more 
simple models with circular direction averaging on one 
surface in the middle of axial clearances between 
neighborhood rows and the most complex full 3D 
unsteady models. 

Detail descriptions of the second and third levels 
models are presented in this lecture series. It's worth to 
emphasize, that up to present time the prediction of 
performances designed gas turbine engines based on the 
zero or the first levels models and were not very 
accurate. Therefore some number of experiment engines 
must be produced for investigating performances before 
certification and production (this number can be up to 
10 and more). Wide using of high levels mathematical 
model on initial stages of new engine design allows 
sufficiently to reduce the time and cost of new engine 
development and, in particular, to reduce the number of 
experiment engines up to a few (two or three). The high 
level models must accompany the all life of new engines 
(included design, certification, serious production, any 
modification and exploitation). 

Central Institute of Aviation Motors (CIAM) has 
valuable experience and high level scientific staff for 
solving complex aerodynamics, heat transfer and 
strength problems for any components of high 
temperature aircraft gas turbine engines. Wide use of 
modern computational technologies allows us to get 
high efficiency of engine components and whole engine. 

Overview 

The lecture series illustrates the numerical 
simulation peculiarities, mentioned above in this 
introduction. The series may be divided conditionally in 
two parts. The first part (the lectures 2 through 5) has a 
more theoretical character. It describes the bases of 
theory for monotone high accuracy CFD methods and 
formulates some important problems of gas turbine 
engine process simulation. The second part (the lectures 
6 through 10) presents many typical results of solution 
2D and 3D gasdynamic and heat transfer problems, 
connected with gas turbine engine design. 

The next lecture (by Prof. M. Ja. Ivanov, Dr. V. G. 
Krupa and Dr. R. Z. Nigmatullin) presents some 
important questions of theory for highly accurate 
monotone CFD methods. There Conditions for 
definition of monotone, TVD and following difference 
schemes are considered . Some details for high order of 
accuracy and implicit scheme's construction are 
described. At the end of this lecture numerical results 
illustrate possibilities of applied difference methods. 

In the third lecture (Dr. V. G. Krupa and Prof. M. 
Ja. Ivanov) there a detailed description of developed 
method for integration 3D Navier-Stokes equations, 
averaged by Reynolds is presented. Two differential 
equations turbulence model is used. Some test solutions 

of 2D and 3D viscous flow problems are presented for 
verification of numerical codes. 

The fourth lecture (by Dr. R. Z. Nigmatullin and 
Prof. M. Ja. Ivanov) describes the mathematical models 
of flow passages for gas turbine engines  and  its 

components of various levels. First two-dimensional Sx 

and S2 models are presented and famous features of 
numerical algorithms are discussed. Then 3D approach 
with averaging in angular direction in the middle of 
axial gaps is considered. 

In the fifth lecture Dr. V. K. Kostege presents 
simulation of multidisciplinary problems for 
thermostress state of high temperature cooled turbines. 
The steady and unsteady temperature fields are 
calculated in results of solution conjugate heat-hydraulic 
tasks for blade (quasi-3D model), for disk (2D model) 
and whole cooled rotor (3D model). Thermostress 
problems are solved by Finite Element Method for real 
complex geometry of turbomachine components. 

As mentioned earlier the second part of this Lecture 
Series presents many practical results of numerical 
simulation of gas dynamics, heat transfer and stress 
problems for gas turbine engine design. 

Dr. R. Z. Nigmatullin delivers his lecture as a 
review of the different applications of 2D and 3D model 
of flow passage's simulation in multistage 
turbomachines, whole core and other multicomponent 
problems. 

Dr. V. G. Krupa presents the results of viscous 
turbulent flow simulation in turbomachine components. 
He emphasizes the treatment of boundary conditions, 
grid generation and turbulence modeling. Results of 2D 
and 3D viscous cascade flow and stator - rotor 
interaction are presented. Numerical results are widely 
compared with available experimental data. 

Dr. V. K. Kostege will deliver two lectures on a 
subject of application and verification of the 
multidisciplinary model of thermostress state for the 
cooled turbine rotor and stator components. Presented 
code package allows to carry out cooling system 
optimization and comparison of alternate cooling 
systems on design stages of high temperature gas 
turbine engines. 

The last lecture presents the perspective problems of 
gas turbine engine simulations. Some review of 
perspective CIAMPs researches in aeropropulsion 
systems is considered. In particular, the Computer 
Turbojet Test Technology based on aeroengine high 3D 
level simulation is presented. Some results for a big 
steam turbine are described. This lecture contents also 
the conclusion of Lecture Series. 
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On the CFD monotone high accuracy methods 

by 
Prof. M. Ja. Ivanov, Dr. V. G. Krupa, Dr. R. Z. Nigmatulhn 

CIAM (Central Institute of Aviation Motors) 
2, Aviamotornaya St., 

Moscow, Russia, 111250 

Abstract 

Some theoretical fundamentals of monotone high 
accuracy methods are presented. The conditions for the 
construction of monotone, total variation diminishing 
(TVD) and following difference schemes are described. 
The peculiarities of high accuracy and implicit methods 
design are given. The typical results of numerical 
solutions illustrate the principal features of developed 
computational techniques. 

Nomenclature 

t time 
X space coordinate 
a convection speed 
u determined function 
U value of determined function 

on the cell boundaries 

f        - flux function 

F value of function/on the cell 
boundaries 

P pressure 
V velocity 
M Mach number 
X time step 
h space step 
c coefficient of difference 

equation 
r relationship of differences 

%(r),M- limiting functions 

b parameter of limiting functioi 
C Courant number 

v,q>,\]/,©- parameters, characterizing 

approximation accuracy in x 
direction 

0,Ct,ß - parameters, characterizing 

approximation accuracy in t 
direction 

X amplification factor 

e phase angle 

G(eUe)- 

Q     - 

j 

<7 

n 

-,+ 

truncation error 

functions, characterizing 

approximation in X direction 

point support parameter 

Subscripts 

cell number in X direction 
current index 

Superscripts 

number of solution layer in t 
direction 
parameters from the left and 
right cell boundaries 

Introduction 

Computational fluid dynamics (CFD) offers one of 
the most promising engineering tools for the design and 
development of aircraft, missiles, turbomachinery, 
propulsion systems etc. With the current maturity of 
CFD development the reader can get acquainted full 
enough, for example, from recently published 
monographs [1,2] and reviewed papers, contained in the 
special issues of Journal "Aerospace America" [3,4]. 
These publications present in detail the CFD 
achievements of foreign researchers (from West Europe 
and North America), but the CFD development in 
Russia is considered just shortly. Below we'll try to 
present a few Russian papers, which contain interesting 
results of effective monotone and high accuracy CFD 
methods development. 

The theory of monotone difference methods for fluid 
dynamics equations solution started from the pioneering 
work of Russian scientist S. K. Godunov in the late 
19.50's [5,6]. The first stage of their development and 
wide application was presented in detail in the 
monograph, published in Russian in 1976 [7] and in 
French in 1981 [8]. The famous original properties of 
Godunov's method were not only monotoniciry, but 
conservativeness (shock capture method) and procedure 
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of arbitrary " discontinuity break down" (the analogy of 
Rieman problem). The last procedure allows to follow 
closely the local flow structure on each cell boundary. 

The other perspective direction of CFD difference 
methods became the construction of nonlinear difference 
scheme. Ones of the first works in this direction were 
the papers [9,10]. In these papers the limiting functions 
were introduced for the conservation of qualitely right 
behavior of numerical solutions. 

The high order of accuracy CFD methods were 
developed in papers [11,12], where the idea of the 
Runge-Kutta methods construction was used. 

Compact difference schemes on minimum points 
support were considered in papers [13,14]. 

We would like to describe in more detail the papers, 
in which monotone difference schemes were developed. 

The original Godunov method used the piecewise 
constant parameters distributions into each cell of grid. 
This method has only the first order of accuracy. The 
realization of a more accurate variant of the Godunov 
method with the piecewise linear parameters 
distributions into cells was proposed at the first by V. P. 
Kolgan and published in the paper [15]. This difference 
scheme has the second order of accuracy for space 
variables. In the paper [15] also the "minimum 
derivatives principal" was applied, that gave the 
nonlinear scheme with the simple limiting functions. 
The concept of the limiting functions (as the flux 
limiting) was independently advanced in the works 
[16,17], which are known very well to CFD researchers. 

The monotone second order accuracy schemes were 
developed also in papers [18,19]. 

The total variation diminishing (TVD) difference 
schemes, introduced by A. Harten [20], became very 
popular CFD tool in the last decade. The general 
conditions for the constructions of TVD schemes have 
been stated and proved in paper [21]. These conditions 
are similar to the conditions of monotonicity. 

The modification of Godunov's method with the 
piecewise parabolic parameter distributions into cells 
was developed by P. Gollela and P. Woodward [22]. The 
implicit variants of Godunov's method with the 
piecewise linear and parabolic parameters distributions 
into cells for integration Euler and Navier-Stokes 
equations were considered in papers [23,24]. 

The paper [25] describes the method with the 
piecewise cubic parameters distributions into cells for all 
independent variables. 

This lecture presents some peculiarities of effective 
CFD method construction. It's worth to emphasize the 
main features of these modern numerical methods. They 
are based on finite difference schemes, which are: 

1 Conservative 
2)monotone 
3)following 
4)high order accuracy 
5)implicit 

Conservative schemes allow to apply the shock 
capture technique for discontinuous flow simulations: 
monotone schemes transform any monotone difference 
functions into monotone functions; the schemes with the 
following   property   select   the   physically   relevant 

solution; high order accuracy schemes allow to use 
coarser grids in comparison with lower order accuracy 
schemes; implicit schemes eliminate restrictions for 
steps of integration. 

The numerical codes using described effective 
methods allow to solve many engineering problems on 
wide spread computers of middle class of efficiency. 

1. Monotone,  TVD   and    following   difference 

methods (the linear case) 

In order to present the essentials of the methods let 
us begin with a simple linear convective equation, 
written here as follows 

du       du 
 Ya— = 0     a = const > 0 
dt       dx 

(1.1) 

where u is unknown function of (x, t) and a is a 
convection speed. This is a typical first-order hyperbolic 
equation and an initial value problem of this equation 
has initial condition 

u(x,0) = u0(x) -co<x<cc 

We have for (1.1) along the characteristic lines 

a 
dx        du 

dt dt 
= 0     u = const (1.2) 

Using (1.2) it's easy to see that if    u0(x)  is 
increasing monotonically, then 

«(x^O^oO,)       for      t>0 (1.3) 

and if u0 (x)   is decreasing monotonically, then 

u(Xj,t)>u0(Xj)        for      t>0 (1.4) 

where    X ■ = jh , h - the space step, j - the point 

number. 
A general two-level explicit scheme for equation 

(1.1) can be written as 

w*n _ y c u" 
+<? (1.5) 

which has 2Q+1 point support, and 

u" = u(Xj,t) Uj+l = u(xj,t + x) , 

where r- the time step. 
An implicit scheme may have the same form  (1.5) 

if solved relatively to unknown mesh function u"    [5], 

Russian scientist S. K. Godunov presented 
convenient a criteria of monotonicity preserving 
schemes [5,7] : 
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The discrete total variation is\ 
The difference scheme (1.5) transforms any given 

monotone function into a monotone function with the 

same growth direction if and only if all coefficients   c 

are non negative 

Cq > 0 (1.6) 

Proof. Let c  > 0    and Uj is monotone function. 

For example it's increasing monotonically, i.e. for all j 

Au"=u"+l-u">0. Then 

Q 

q=-Q q=-Q 

q=-Q 

q=-Q 

(1.7) 

The sufficient condition has been proved. The necessary 
condition   follows   from   the   next   example.    Let 
C*<° and 

U"j=\ for j>% 

u" = 0 for j^% 
Then 

Au:+1=un
q^-u?l=c„ <0 

9o 9o <?o 

and monotonicity of numerical solution will be 
destroyed. This completes the proof of monotonicity 
preserving criteria. 

It's well known also for solution (1.1) that the total 
variation 

W(u)=j du 
dx 

dx (1.8) 

can't increase with time, i.e. 

TV{u)) (1.10) 

A finite difference scheme is called Total Variation 
Diminishing (TVD) scheme, if it satisfies a discrete 
version of (1.9), that is 

TV(u^l)<TV(u]) (LID 

For the linear case TVD schemes identify to 
monotone schemes [20]. In the next section it will be 
shown also for the nonlinear case, that the TVD 
conditions are the same as the conditions of 
monotonicity. 

Now we consider more strict class of "following" 
schemes [25], which satisfy the conditions (1.3), (1.4). 
There conditions for discrete functions are rewritten as 
follows 

for monotone 
M;+1 < 

increasing discrete functions 
(1.12) 

with 

A«; >0and 

for monotone 

uf > 
decreasing discrete functions 

(1.13) 

with 

A«; <0. 
If for difference scheme the relations (1.12), (1.13) 

are fulfilled, then the scheme is following . 
We will obtain the conditions for following schemes 

for equation (1.1), when these schemes are written in 
the form (1.5) and conservative form (in the next 
section). Previously it has been emphasized that the 

coefficients Cq in (1.5) are obviously not arbitrary and 

have to satisfy a certain number of consistency 
conditions, following from approximation requirements 
and depending on the order of accuracy (see, for 
example, [1]). The first of consistency condition under 
the form 

Q 

q=-Q 

(1.14) 

is obtained easily from the requirement that the function 
u = const should be a solution of (1.5). Thus the 
scheme (1.5) can be written as 

TViuit^^TViu^)) (1.9) 

for    tx > t0 

The idea of scheme design with total variation 
diminition was proposed by A. Harten [20]. 

u"+l = u" V, 
, -j ^q(U" 

q=-Q 
j+q - 

(1.15) 
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For   monotone   increasing   discrete   function       «, 

(Aw" >0) the condition (1.12) leads in the case of 

scheme (1.15) to 

(1.16) 

We can see that (1.16) will be satisfied if and only if 

ca > 0   for   -Q<q<0 

(1.17) 

c  < 0   for    0 < q < Q 

From (1.6) and (1.17) we obtain the necessary and 
sufficient conditions for monotone following schemes in 
the form (1.5) as follows 

C  = 0   for    0 < q < Q 

c  > 0   for   -Q < q < 0 

(1.18) 

For monotone decreasing discrete function from the 
condition (1.13) we have the same results (1.18). Hence, 
a two-level explicit linear monotone following schemes 
for equation (1.1) can be written also as upwinding 
schemes 

-l 

9=-ß 

(1.19) 

with   cq >0, or 

q=-Q   p=q 

P=-Q q=~Q 

P=-Q 
J+P> 

(1.20) 

mthcp= ^X>0. 

As a typical examples the three widely known two- 
level explicit schemes for equations (1.1) are presented. 
They can be interpreted also as the inverse methods of 

characteristics using the exact solution (1.2) with linear 

or parabolic interpolation over u" values. 

Courant-Isaacson-Rees Scheme [26]. It's written in 
the form (1.15) as 

«r=«; -cv«;,   v«; = «;-«;_,     a.21), 
where C = ax I h - the Courant number. For stability of 
this scheme must be 0 < C < 1. 

This scheme is following monotone scheme. The 
original first order Godunov type scheme for equation 
(1.1) has the same form (1.21). In the characteristic 

interpretation it uses the linear interpolation over u" 

and «"_,   values. 
Lax Scheme [27]. It can be written 

u"+1 =u" +-(l-C)Ati" --(l + C)Vn"    (1.22) 

This is monotone non-following scheme. It uses the 

linear interpolation over «"_, and u"+l   values. 

Lax-Wendroff Scheme [28]. It has the form 

Mj+1 =W;+IC(C-I)AM;--C(C+I)VW; (1.23) 

This scheme is non-following and non-monotone 

scheme. It uses the parabolic interpolation over u"_x,u" 

and u"+] values. 
These examples accent, in particular, the difference 

of monotone and following schemes. 
We would like to emphasize that the conditions 

(1.6) for monotone schemes and (1.18) for monotone 
following schemes are necessary and sufficient 
conditions, therefore these conditions get too strict 
limitations. For example, in the S. K. Godunov's 
pioneering work [5] was shown that it's impossible to 
construct the linear monotone scheme with higher 
order of accuracy than first order. In this connection we 
consider in more detail the sufficient conditions, which 
are more convenient for practical construction of 
following conservative difference schemes (including 
the nonlinear schemes). 

2. Monotone and following nonlinear schemes 

The scalar nonlinear conservation law in one space 
dimension 

a»|g/(») = 0 
dt      dx 

(2.1) 

presents a simple enough model that already contains 
the phenomena of shock wave formation and expansion 
fans. It describes wave propagation at a speed 
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and can be written 

a{u) = — 
du 

du i sdu n — +a{u)— = 0 
dt dx 

(2.2) 

As for (1.1) the solution u\x,t) is a constant along 

the characteristic lines a = dxldt. They can't intersect 
which provides the formation of shock waves. We have 
also the properties (1.3) or (1.4) for monotone 
increasing or decreasing solutions. 

Suppose that equation (2.1) is approximated by a 
conservative scheme (finite volume scheme), which for 

cell with number j (Fig. 1) can be written as: 

«r=«;-^+x-^x)   <*- 3) 

where   the   numerical   flux   functions    F. 
J±'A 

are 

approximations of the fluxes across the cell boundaries 

at xJ±y2 

The following difference scheme must satisfy the 
conditions 

FJ+X*FJ-X (2.4) 

for monotone increasing mesh function with   Aw" > 0 
or 

FJ+K*FJ-X (2.5) 

for monotone decreasing mesh function with Aw" < 0. 

In the original monotone Godunov's scheme [5-7] 
the values are supposed to be the flux values taken 
from the exact solutions of the initial value problems 
defined by piece wise constant data between each cell 
boundaries. 

For the scalar conservation law (2.1) we define 

FM=< , v (2.6) 

where [/T±y are the values of function w on the right 

and on the left from boundary x±i/Corespondently. In 

the case a\u) > 0 equation (2.3) can be written as 

«r=«;~[/(0-/fe) 
or, defining 

(2.7) 

aJ=< 

obtain 

/fe+xM^-J 
^K-^K 

>u»x*u;-x 

yduyj 

(2.8) 

,u~v = u 
i+%-^}~% 

<X^-\akv^-U]-y)     (2. 9) 

The following scheme (2.9) in our case satisfies the 
conditions 

v-^v-^ (2.10) 

for monotone increasing mesh function with Aw" > 0 

and 

UM*UJ-X (2.11) 

for monotone decreasing mesh function with Aw" < 0. 

Define the boundary values at first as the explicit 
formula 

Fig.l 

A i-i j ju x 

Computational cell of finite volume scheme in the ID cascade 
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tf;+*=«;+**>"/     (212) 

Here the limiting function 

(2.13) 

r; = v«;/A«; 

can depend on various numbers of difference 

relationships r". For difference schemes in the 

following chapters the function \i" depends on one, two 

or three (as in (2.13)) difference relationships r".  Some 

limiting functions  \i" for a few concrete nonlinear 

schemes are presented in section 3 of this lecture. 
Inserting the boundary values  (2.12)  into scheme 

(2.9) we have 

«r,=«;+^;v«;^ (2.14) 

where 

x-=i+n;/r;-n^        (2.i5) 

For monotone increasing discrete function Aw" > 0 the 

condition (2.10) leads to (in our case a" > 0) 

X) > 0 (2.16) 

As we'll see below the inequality (2.16) defines the 
limiting coefficients for nonlinear difference schemes. 

Estimating the mesh function behavior on a new 

level Awf1 =«"+J-«J+1  for the scheme (214) WC 

have 

Aw; i+i 

= Au" \-l«UK+)+l^A-F!-y) (217) 

Considering the equation (2.17) with the relation (2.4) 
we obtain the criteria of monotonicity for following 
explicit difference schemes: 

Following   explicit  difference   scheme   (2.14)   is 
monotone scheme if 

-a"X"<\ (2.18) 
h }  J 

for all} and n. 
The relation (2.18) defines the limit for the time 

step T and is a stability condition (together with (2.16)) 
for the linear variant of the scheme (2.14). 

We consider also the implicit difference scheme in 
the form (2.9), when the cell boundary values are 
defined as 

[/:+^M;+1
+AM;+vr <219> 

In this case instead of (2.14) and (2.17) we have 

u"^=un--an+]wufr;'    (2.20) 
; J     h   J I' 

[i+^r^.)A<,= 

= W+J;(FJ+X-FJ-K) (221) 

The stability condition for the linear variant of 

implicit scheme (2.20) is (for a"+] > 0) 

(2.22) If > 0 

In this case we have from (2.21) that scheme (2.20) 
is a monotone scheme. 

Having summarized our considerations we can 
formulate the next criteria: 

Following stable schemes (2.14) and (2.20) are 
monotone schemes. 

We want to emphasize once more the relations 
(2.16), (2.18) and (2.22) are very convenient for practice 
using when we construct the concrete following 
schemes. 

Now we'll show the identity of monotone and TVD 
schemes with various coefficients 

The general two-level difference scheme with 
various coefficients are presented in the same as (1.5) 
form as: 

*;+1 = 5>,0K 
i=-Q 

+1 
(2.23) 

where coefficients Cq(j)   must also satisfy the first of 

consistency condition (see (1.14)) 

Q 

I 
9=-ß 
Z<0/)=i (2.24) 

Rewrite (2.23) using (2.24) in the form 

e 
I 

q=-Q 

and further 

<'=«;-£',(./)(«;-«;J (225) 



2-7 

«r=«7-Sc,C/)(«;-«;J+ 
q=-Q 

+l*,wk«-«;)= 

e-i 

-i -i 

«r,-s^c/)z(«;+^-«;J+ 
9=-ß />=« 

Q 9-1 

z +t^o)z(«;^.-«;J= 

e-i 

where 

and 

SO)=IXC/),     for   -ß£/>£-l 

ZpÜ) = -ttcqÜ)>    for   °^<ö 

j+p     uj+p+i    ui+p 

It's not difficult to get sufficient monotone 
conditions for nonlinear difference scheme in the form 
(2.26). Following the proof of the Godunov 
monotonicity preserving criteria, presented in previous 
section, we consider the monotone increasing mesh 

function u" (with Aw" > 0 ) and define difference 

AM;+1 =*/;;;-»;+1 = 

AM;-SSO'+I)AW;,+.+ 

P=-Q 

+W;-Z^O)AM;,= 
P=-Q 

= AW;-ce_10+i)AW;+e- 

e-i 

■z 
p=-Q+\ 
Z[v.ü+i)-^K+ 

+ce_1(7)Aw;_e    (2.27) 

which must be non negative for monotone scheme. 
Consider (2.27) we'll obtain the next sufficient 
conditions of monotonicity 

cQ_,{j+ l)<0 

sC/hv.O+i),   P=J, ,Q-I 

l-c_,0 + l) + c0(y)>0 (2.29) 

cp{j)>cp_x{j + \)>Q,   P=-Q+i -l 

c.Q{j)>0 

for all / The conditions (2.29) may be rewritten in 
form 

c_x{j)>c_2{j + \)>.>c_Q(j + Q-\)>0 

(2.30) 

c0{j)>-cx{j-\)>..>-cQ_x{j-Q + \)>0 

c-Jj + \)-c0{j)^> 

for all   / If coefficient    c (j)    doesn't depend on 

solution, then these conditions are also necessary. We 
can obtain the proof of the necessarily the same way as 
it was obtained by S. K. Godunov (see the previous 
section). 

The conditions (2.30) are exactly the same as was 
obtained for TVD schemes by A. Jameson and P. Lax in 
[21]. This is the confirmation of the identity of 
monotone and TVD schemes. 

For semidiscrete schemes in a form 

Ol p=-Q 
(2.31) 

the conditions of monotonicity have also the form 
(2.30) without the last inequality, from which we can get 
the stability condition for an explicit schemes (2.26). 
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3. Following nonlinear high order accuracy schemes 

We would like to construct now following monotone 
high order accuracy schemes for integration of equation 
(2.1). For approximation (2.1) and (2.2) the difference 
formulas (2.7) and (2.9) are used. 

Into each cell we consider piecewise polynomial 
distributions of function u(x,t) in the form 

u{xJn) = u"J+v{x-xJ)\ — J 

+C0 (x-Xj)' 

V 

(tf. 

(x-x.y 
ydx'j 

d*U 

dx4 
(3.1) 

where  y, cp, V|/ and CO are parameters, defining below 
an accuracy of space derivatives. Using the same 
identification for discrete differences 

A«; = «;+1 - «;,      vw; = «; - «;_,     (3.2) 
and approximate relations 

'^T«±(A«;+V«I;) 

+—(4v-4(p-4w + 3o)Vw" + 
16 J 

+ 2^-o 

16 •/_1 

The next values of parameters 

v = l, q>= K' V = -2/ ,  CO 

(3.4) 

(3.5) 

get for given cell the approximations of space 
derivative  duldx  up to the fifth order  of accuracy 

0[h5).   For variable value CO the order of accuracy 

decreases to the fourth, for variable values \|/ and CO - 
to the third, for variable cp, V|/ and CO - to the 
second. 

Now obtain conditions of monotonicity for 
following difference schemes, which have the 
approximation of space derivative with order of 
accuracy from the second to the fifth. 

We consider for relation (3.4) the modificate values 
of differences 

/   \ V«" 

AÜ"=Au"%(rJ+l),      r 
Vu". y+i 

v+i An" 
(3.6) 

;+i 

' du ! 

y8x2j 
^(A.;-VW;) (3.3) 

w; = v«;x *V 
\TJJ 

W 
Kdx j. 

1(A«;-2V«;+V«I;.1) 

' du 
A .   J-^UU"   -3A<+3V<-Vw"  ) 

VK^VH^X 
' 1 ^ 

vO-iy 
O-i = 

where Xv) is a limiting function and rewrite 

^K
=W

;
+
^

M
;+I

+ 

it's not difficult to obtain for an explicit scheme 

U 
CO 

j+K 
u"+ — Aw" , + 

16 y+i 

+—(4V + 4(D + 2\I/-3CO)AW" + 
16 J 

+—(4v + 4(p+2\j/-3co)Aw" + 

+—(4v-4cp-4\i/ + 3co)Vw" + 
16 J 
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Here 

+ 2v_f?-Vii?1=ii"+Aii"n/ 
16 ; '      ;        ;   ; 

Hy= — [co x(o+i)A+i + 

+(4 v + 4cp + 2\(/ - 3co )X(T) ) + 

(3.7) 

+(4v-4cp-4v|/ + 3©)x 
'l^ 

KrU 

rj + 

+(2\i/-co)r/r/_1x 
<  1 A 

vO-i; 

^(o+i'O'O-i) 

We have the difference scheme in the form similar to 
(1.26) 

where 

„."+1       -.«       ^ ~  Y7*,"1n 

j j    h  J    J   J 

K = i + ^/r;-^ 

(3.8) 

It can be shown  (see, for example, [24]), that the 
conditions (1.34) or (2.17) are fulfilled, if the limiting 

function %(r) has the form 

%(r) = 

0,r<0 

br,0<r< V,. 
/ 0 

(3.9) 

where 1 < b < &max- 
We present the examples of a few difference 

schemes. For the scheme with piecewise linear 
distributions of function u(x,t)  into cells     (V = l, 

(p = \|/ = co =0), bmax = 3, value of Courant number 

C = az/h<0.5. 
The Godunov scheme with piecewise linear 

distributions of functions into cells was published first 
in 1972 year by V. Kolgan [15]. Realized in this work 
"the minimum derivatives principal" have the limiting 
function (3.9) with b=l. The Godunov scheme with 
piecewise parabolic distributions of functions into cells 
was realized in the work by P. Colella and P. R. 

Woodward [22] and was published in 1984. For this 
scheme (with V = 1,  cp = var, \|/ = CO = 0), the value 

bmax = (3 — <p)/(l — (p),     and the Courant number 

C<4/(5-(P+(1 + (PW- 

For a convenient description of limiting functions 
we use also the "minmod" operator, which is given by 

minmod(a,Z>) = 

sign{a) + sign{b)    . /, , ,,,\ 
-min (3.10) 

The "sign" operator sign{a) denotes "sign of a" and is 

therefore ±1. 
In the case of previous scheme with piecewise 

parabolic distributions into cells for the modificate 
values of differences in (3.7) we have 

A«; = min mod(Aw;,6V«;) 

V»; = minmod(v«;,iA«;) 

(3.11) 

The    explicit    scheme    with    piecewise    cubic 

distributions   into   cells   (with    V = 1,       cp = y~ , 

--% \\l = - •% , CO = 0) has 

)/ 
/4> b„„=9/, C<v(\ + b/+} 

and 

(3.12) 

Aw; = min mod( AwJ ,Z>V«;) 

V«7 = minmod(v«;,*A«;) 

V«;_, =minmod(v«;_,,4Vfi;) 

The explicit scheme with parameter values (3.5) has 

b     =36/      c<l/(\ + 2b/ + n/ ) 

and relations (3.6) in the form 

M" = min moduli". ,bVu]) 

AwJ+I = min mod(A«;+1,8M") (3.13) 

Vw; = minmod(Vw;,Mw;) 

V£f;_, = min mod( Vi/;_,, n/2 Vufj 
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The value b in (3.11) - (3.13) is taken usually as 

b    . max 

Here we would like to show also that a detailed 
consideration of limiting functions is presented in the 
paper [29], a construction of high order accuracy 
schemes for hyperbolic equations is described in the 
paper [30-33]. 

Additional publications on this question up to 1987 
we can see in the references of the monograph [1]. 

4. Construction of implicit following schemes. 

For producing an adequate numerical solution we 
must use a mesh with very fine spacing in the regions 
with the extreme parameter gradients (in boundary 
layers, shock waves and others). In these regions the 
aspect ratio of the cells may be so large and suffer both 
losses of accuracy and rate of convergence and give 
very strict limit on time step value for explicit schemes. 
The present section considers the construction of 
implicit schemes, which are unconditional stable for any 
Courant number value (for the linear case). 

Let us begin from the very spread two-level implicit 
scheme for equation (2.1) in the form (see, for example, 
[34]) 

H+l 

+ a 
dx 

n+\ 

+ (l-a) 
s/V- 
dx 

= 0   (4.1) 

Here 
dx 

is the discrete approximation of the value 

df/dx in a point with j and n, o is a parameter. For 
cr=0.5     the scheme (4.1) has the second order of 
accuracy. 

For    the    linear    function    /(«) = au    and 
corresponding linear difference scheme we have 

fJ = «;cKe)     (4.2) u) = X"eije 

Inserting the relations   (4.2) into scheme (4.1) we 
obtain the amplification factor in the form 

l-(l-o)Z 

1 + aZ 

Z = Z0+ iZx 

Z0 = CRe[G(9)], Z, = CIm[G(e)], C = 
ax 

For "following" difference schemes the relations 
(1.12) and (1.13) lead to the condition 

(4.4) Z0>0 

for all 0 (as earlier we consider the case a > 0). 
It may be shown that implicit "following" schemes 

with  a > 0.5     are  unconditionally  stable  schemes 

(N*i)- 
Next we'll construct an implicit "following" scheme 

with third order of accuracy in time, which is 
unconditionally stable. Previously we would like to 
emphasize that the simplest way for third order scheme 
construction may be not successful. For example, the 
one parameter implicit three-level scheme with the third 
order of accuracy in the form 

1/ 
^^u"+2+uTl- 

3a-2 
w;i+ 

+ + 

(4.5) 

is unconditionally stable scheme. With a = - 2/3 we 
have the Adam's type scheme, with a = oo we have the 
Simpson type scheme. 

The amplification factor X for scheme    (4.5) is 
defined from the relation 

[(3a - 2) + (o - 1)Z]X2 + 4(1 + aZ) - 

-(3a + 2) + (a + l)Z = 0 (4.6) 

The analysis of this equation is complex enough, 
therefore we consider the limited case z = oo , when 
roots are 

^U 
-2a ± V3a2 +1 

a-1 

or if a ^ 0 one of these roots is more then 1, that 
follows from inequality 

f43s       max X,lj2 = max 
-2a ±y[: W +1 

a-1 
> 

2 a +1 
>-rJ—■ 7- > 

a-1      a-1 
: + l>l 
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Same way we can shown for a = 1 or rj — co. 
Hence, the third order accuracy schemes (in time 

direction) in the form (4.5) aren't unconditionally stable 
schemes for any linear approximation of space 
derivative. More than three time levels for 
approximation give us complex numerical algorithms, 
which demand essential growth of computer memory 
and speed. 

For construction of unconditionally stable third 
order schemes we apply the idea of recalculation 
(similar to the Runge-Kutte's methods). 

One parameter two step three time level schemes in 
the form 

„M+l+a     „,«       -   (---vH+l+a      ,   r-u-")" 

(l + ajx      2[dx\j 2[dx)J 

 1__M 
x 6a(a + l) [dx)n 

«r1-«; M+l+a 

+ 

(4.7) 

i+c,z0 +c2zl +c,z2 +c4z0{z
2 +Z

2
)+B

2
{Z

2
 +Z

2
)

2 

l +c5z0 +c6z
2

0 +c7z
2 +csz0{z

2 +Z
2
)+B

2
2{Z

2
 +z2)2 

CX=2AX>    C2 = AX
2+2BX 

C, = AX
2-2BX,     C4 = 2AXBX 

C5 = 2A2, C6 = 4+2B2 

C7 = A2
2-2B2, CS=2A2B2 

For a > 0 the value \k\ < 1 scheme (4.6) is 

unconditional stable (\AX| < A^, \BX | < B2, 

Ax - 2BX - A\- 2B2). For a < 0 we can show, that 

|X,| > 1 for large enough Z. 

Is similar to (4.7) a family of two parameters third 
order accurate schemes (a and ß are positive 
parameters) presented. 

+ 3a + lldfY+\   3a + 2 idf}"_Q 

6a   [dxjj.      6(a + l)lc!rJy 

M;+1+a-w; 

(l + a)x Bxf, 

M+l+a 

+ a<^>       +(l-o) 
dx 

= 0 

have the third order of accuracy in time direction, where 
a is nonnegative parameter. At the first step we define 

value     w"+1+a on the time level     / = (n + l + a)x 

(the predictor step), at the second step we define value 

tt"+1 on the next time level  t = (n + Y)X (the corrector 

step). By that the scheme (4.7) demands approximately 
two time more calculations, then the scheme (4.6). 

Spectral stability analysis of scheme (4.7) leads to 
amplification factor 

P + l 
2(<x + l) 

ß + 1 ,n+,+P=M„+i^+l(M»+1+a_M„) 

n+1 
1 

6ß(ß + l)l&J, 

M+1+ß 

+ 

(4.8) 

x = l + AxZ + 

\ + A2Z + 

BXZ
2 

B2Z
2 

A 
3a2+1 

6a .      % = 
3a2 + 2a + l 

12a 

A = 
3a2+6a + l      _ 

,            ,     B2 
6a 

3a 2+4a + l 

12a 

shave 
2 w 

+ 3ß±lj4fr,
+ 3ß±2 

6ß   \arj,      6(ß + l) 
^=0 
dx 

The schemes (4.8) with ß > 0 are unconditionally 

stable (for Z0 > 0), because they are similar to schemes 
(4.7) in the linear case. 

5. Numerical examples. 

An examples of application of "following" high 
order accuracy methods to integration of linear 
convective equation, Euler and Navier-Stokes equations 
are shown in this section. The choice of model problems 
demonstrates typical peculiarities of developed methods 
and codes. In particular, the results for linear convective 
equation illustrate the high order of accuracy methods. 
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Then the results for 2D and 3D Euler equations 
demonstrate the quality of shock and rare wave solutions 
and some other properties. At the end of section two 
test problems for a steady and unsteady viscous laminar 
flow are solved using Navier-Stokes equations. 

Figure 2 and 3 show test results for the model 
convective problems 

where 

du du n — + — = 0 
dt    dx 

u(x, 0) = sin 7cc, 

(5.1) 

-1<X<1 

with periodical boundary conditions and using uniform 
grids. This results have been obtained by A. Kozerod for 
the authors' request. The truncation error 6 from space 

size h is presented for the time t = l. The value 8 is 

defined for the norm /, 

8 = 
(l l *) — \\u-ue\ dx 
V2-i J 

(5.2) 

where ue is the exact solution of problem (5.1). The 
space derivatives for all cases are calculated with the 
third order of accuracy, without using the limiting 
functions (the solid lines) and using the limiting 
functions in form (3.9) (the dotted lines). The index 1 
relates to the implicit scheme (4.1) with G = 1 (the first 
order of accuracy by t), the index 2- to the scheme (4.1) 
with G = 0.5 (the second order of accuracy by t) and 
the index 3 - to the scheme (4.6) for the a = 0.5 (the 
third order of accuracy by t ). Figure 2 presents results 

for the Courant number C = — = 1, figure 3 - for the 
h 

Courant number C = 2.5. We can see the logarithm 8 
depends on the logarithm h linearly with the angle 
tangent 1, 2 and 3. If we use the limiting functions the 
accuracy of the scheme (4.6) is only two times more 
then the accuracy of the second order scheme. When the 
Courant number is C - 2.5 (figure 3) the errors of time 
derivative approximation have the great role and the 
accuracy of the scheme (4.6) has the third order (with or 
without the limiting functions). 

A second example for demonstration of accuracy 
concerns a 2D transonic turbine cascade. Figure 4 
illustrates the constant entropy error lines in percents % 
for first (1), second (2) and (3) third order schemes. We 
can see very small level of errors for high order scheme. 
For this case the mesh contains 57 x 10 cells, the exit 

Mach number M2 =0.8. 
The impressive capability of developed schemes is 

demonstrated by some solutions of inviscid and viscous 

problems. The first results of this series present 2D and 
3D inviscid flows. 

Fig. 5 illustrates transonic shock flow results in 

model symmetric cascade under angle of attack 10 . 
Here the H-type mesh with 158 x 40 cells is used. Exit 

Mach number is M2 = 0.73 . Mach constant lines on 
pressure and suction sides are presented. Dotted lines 
are sonic lines. 

Fig. 6 shows free underexpanded axisymmetric jet 

with value n = p0/px = 2    and the exhaust Mach 

number M0=2. The computational grid contains 40 
cells and is connected with the boundary jet. The 
pressure   constant   lines   are   given   with   interval 

Ap = 0.04. We want to emphasize the good resolution 
of a shock and rarefraction waves, moch better then for 
the first order accuracy method [7,8]. 

The next results demonstrate the supersonic flow 

with the initial Mach number M0 = 3 (x0 = 0) into a 
channel (fig.7). Here also we can see very good 
monotone solution near shocks and other waves. 

The 3D inviscid supersonic shock solution between 
two   intersected   wedges   (the   leading   edge   angle 

Y = 12.2°) with initial Mach number Af0 = 3.17 is 
shown in fig. 8. In this case we have self-similar solution 
with Mach shock deflection, which is presented as 

pressure contour lines with Ap = 0.07. A Cartesian 
mesh had 30x30 cells (in the plate x = const). 
This result demonstrates good 3D shock resolutions. 

Now we present the 2D results of the two models 
viscous problems solutions, using Reynolds's averaging 
Navier-Stokes equations. These problems involve a 
steady axisymmetric flow of air first in a constant-area 
cylindrical duct, then through a reverse-flow angled 
orifice, and finally into the atmosphere as a free jet, as 
depicted in Fig. 9. Two parameters differential turbulent 

model (q-G>) is used [35]. Computational mesh 
contains 80 x 60 cells. Fig. 9 presents velocity constant 
lines with interval AV = 0.03. Velocity value relates 
to stagnation sound speed value. Fig. 10 presents 
streamline contours. The mass discharge coefficient 
equals 0.615. 

The last viscous 2D problem is an unsteady shock 
and symmetric wedge interaction, as depicted in fig. 11. 
The wedge has a base dimension of 56 cm and the 
symmetric leading and trailing wedge angle are 45 
degrees. Fig. 11 and 12 illustrate constant density 
contours at t - 60 and 87 microseconds. In these time 
moments the solutions have automodeling type. Here the 
algebraic Baldwin-Lomax turbulent model is used [36]. 
The mesh contains 90 x 70 cells. The two last 
solutions were presented as special benchmark problems 
on Canadian CFD Conference in June 93. 

Results, which are presented in this lecture 
demonstrate a good possibility of developed numerical 
methods for calculation steady and unsteady flow of 
inviscid and viscous gas in the wide range of velocity 
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(for deep subsonic, transonic, supersonic and hypersonic 
speed). 

The next lectures contain many illustrated material 
for solution of various practical problems of gas turbine 
engines and its components design and verification of 
computational codes. 
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Evolution of solution error e with space mesh size. 
Courant number C=\. 
1 - the first order scheme; 
2 - the second order scheme; 
3 - the third order scheme; 
solid lines   - without the limiting functions; 
dotted lines   -     with the limiting functions. 
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Evolution of solution error s with space mesh size. 
Courant number C=2.5. 
1 - the first order scheme; 
2 - the second order scheme; 
3 - the third order scheme; 
solid lines   - without the limiting functions; 
dotted lines   -  with the limiting functions. 
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Fig. 4        The constant entropy error lines for 2D 
transonic turbine cascade: 
the mesh 57x10, 
the exit Mach number - 0.8. 
1 - the first order scheme; 
2 - the second order scheme; 
3 - the third order scheme. 

Fig. 5        Transonic shock flow in 2D symmetric 

cascade under angle of attack 10 . 
The exit Mach number - 0.73. 
Mach constant lines. 
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Fig. 6        The free underexpanded axisymmetric supersonic jet. 
The pressure constant lines picture. 

Initial Mach number M0 = 2, p^l p^-2 

Fig. 7 Supersonic flow into 2D channel. Inlet Mach number M0 = 3. 

The inviscid supersonic shock solution between 
two intersected wedge. 

The pressure contour lines. 

Leading edge angle y = 12.2°, the initial 

Mach number Mn =3.17. 
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Fig. 9        Axisymmetric free - jet flow. 
Velocity constant lines with interval A V = 0.03. 

-2 
I I J ^UlhripMA^flff^i^^taMd 

Fig. 10        Axisymmetric free - jet flow. 
Streamline contour. Mass discharge coefficient 0.615 
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Fig. 11        Unsteady shock/symmetric wedge interaction. 
Constant density contour at t = 60 microsecond. 

Fig. 12        Unsteady shock/symmetric wedge interaction. 
Constant density contour at t = 87 microsecond. 
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Solution ofNavier-Stokes equations using high accuracy monotone schemes 

by 

Dr. V. G. Krupa, Prof. M. Ja. Ivanov 
CIAM (Central Institute of Aviation Motors) 

2, Aviamotornaya St., 
Moscow, Russia, 111250 

Abstract 

Numerical monotone methods for integration of the 
Reynolds averaged Navier-Stokes equations are 
presented. These methods employ finite volume 
formulation, implicit high-order accuracy Godunov 
type scheme and two-equation {q — (0 ) turbulence 
model, based on integration up to the wall. To illustrate 
of the typical peculiarities of these methods the 
computations of viscous flows in curvilinear ducts, 
around 2D airfoils and 3D shock-wave boundary layer 
interaction are considered. Available experimental data 
are used for verification of the computed results. 

Nomenclature 

A,B,C,D- Jacobian matrices 

E,F,G- mass, momentum and energy fluxes 
1 identity matrix 

J transformation matrix 
M Mach number 
Re Reynolds number 
Pr Prandtl number 
T temperature 
U conservative variables 
k turbulent kinetic energy 

P pressure 

t time 
V relative velocity 

(.r,r,<p)- cylindrical coordinates 

Y specific heats ratio 

G,TI,Q- general curvilinear coordinates 
s turbulence energy dissipation 

X bulk viscosity coefficient 

n molecular viscosity coefficient 

p density 

T          T           T 
xx,     xr>      xq>' 

viscous shear stress 
T        T         T 

n 

n 
A 

angular velocity 

Superscripts 

denotes time level 
denotes quantities in generalized 

coordinates 

Subscripts 

denotes quantities in the centers of 
computational cells 

denotes differentiation in £, r\ and C, 
directions, respectively. 

Introduction 

At present time a large number of numerical 
methods for the solution of Navier-Stokes equations 
have been developed [1,2]. We would like to indicate 
shortly some of these methods. One of the widely used is 
the Beam and Warming approximate factorization 
scheme [3]. An implicit method of MacCormack [4] 
based on a bidiagonal solution technique has been also 
applied successfully to solve fluid dynamic problems. 
The multistage Runge-Kutta time-stepping scheme with 
multigrid technique developed by Jameson et al. [5,6] 
for Euler equations has been extended to 2D and 3D 
Navier-Stokes equations [7,8]. 

Most of these methods represent non-dissipative 
approximations of the convective terms and frequently 
display oscillations in the neighborhood of shocks. To 
suppress (but not completely eliminate) these 
oscillations artificial dissipative terms have to be added. 
In practice, it needs a "tuning" of dissipation 
coefficients. Also, these methods have time-step 
restrictions due to either factorization errors or explicit 
structure of the scheme and demonstrate rather low 
convergence to steady-state solution. 

The construction of accurate and reliable methods 
for solving Navier-Stokes equations can be done on the 
basis of high-order accuracy monotone schemes. One of 
the first monotone schemes was originally proposed by 
Godunov [9]. The method uses a piecewise constant 
distributions of parameters in each cell and a procedure 

Paper presented at an AGARD Lecture Series on 
"Mathematical Models of Gas Turbine Engines and their Components", December 1994. 
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of arbitrary discontinuity breakdown (exact solution of 
Riemann problem at cell boundary). The method is 
conservative, have good shock-capturing properties and 
closely simulates wave propagation at each cell. The 
method was widely used for computation of inviscid 
flows [10], however, its application to solve Navier- 
Stokes equations has long been restricted because of 
the first order accuracy. Extension of the method to the 
second order accuracy in space has been carried out in 
[11]. To satisfy the conditions of monotonicity piecewise 
linear distributions of parameters were restricted to 
'minimum derivatives values principle'. More recently, 
closely related to this method a family, of so-called 
high-accuracy TVD schemes [12-15] has been 
developed for Euler equations. These schemes are 
second or higher order accurate, capture discontinuities 
with high resolution and need no artificial dissipation. 
Up to now, a large number of Navier- Stokes solvers, 
based on TVD formulation , have been developed for 
computation of external and internal viscous flows (see, 
forexample,[16-23]). 

In this lecture, using ideas of the previous lecture, 
the numerical method for solving Navier-Stokes 
equations is discussed. The method is based on the 
implicit monotone second and third order accuracy 
Godunov-like scheme. The Reynolds averaged Navier- 
Stokes equations closed by two-equation turbulence 
model are written in the conservation-law form 
generalized curvilinear coordinate system. The main 
ideas of explicit Godunov scheme - principle of 
monotonicity and procedure of arbitrary discontinuity 
break-down are used. Piecewise parabolic distributions 
of the parameters over cells of the computational grid 
are used in order to increase the order of approximation 
[13,24]. The scheme is written in delta form [3]. The 
implicit operator is constructed taking into account the 
sign of the eigenvalues of the Jacobian matrix [25]. To 
avoid time-step restrictions due to factorization, the 
unfactored implicit operator is inverted using Gauss- 
Seidel line method. Extension of algorithm to third- 
order accuracy in time is also presented. 

The Navier-Stokes solvers are the necessary tools 
for prediction of viscous effects in the aerodynamic 
design. Applications of the present numerical method to 
turbomachinery problems will be presented in the next 
lectures. In this lecture some numerical examples are 
considered. The computed results include turbulent 
flows in curvilinear ducts, over 2D airfoil and 3D shock- 
wave boundary layer interaction. Accuracy of the 
methods is estimated by comparison with available 
experimental data. 

ÖU    8F    dG    dE     „ — + — +      +_—= /c, 
dt    dx    or    3cp 

F = F,-F, 

P 

U=   pvr 

P% 
e 

G = G,-GV, 

(i.i) 

E = E,-EU 

F: 

PVr 

PVxVr 

pv"+p 

PVr% 

(e + p)vr 

E,= 

PVx 

pvl+P 

PVxV<, 
(e + p)vx 

P% 
P^% 

9VrVV 

Re G- = RS 
Ap 

Re/- 

xcp 

W 

1. Governing Equations 

Reynolds-averaged Navier-Stokes equations in a 
cylindrical (x,r, (p) system of coordinates rotating with 

angular velocity Q are: 



3-3 

K = 

-pvr 

-pvxvr+Re_1T„ 

pCCv.+Qr^-v^ + Re-1 (x„-xw) 

-2pvr(v(p+nr) + 2Re-1xr(p 

-vr(e + p) + Re"'Ar 

ex. 
 L + !L + _L 
Sr     r dep      r 

X    = U   LH * t™ = ^ 
^ + 15v2L 

öx     r Scp 

xrr=(X + 2n)% + X 
or 

 5. + ?-+-L I 
ox     r Scp      r J 

dr r     r Scp J 

^■^S+fe+^K 
Ax = txxVx +^xrVr + V<p +^^' 

X , r and (p axes; \Xl. and |J,, are the molecular and 

turbulent   viscosity    coefficients,    K-— (2/3)|.i    , 

Pr, = 0.72   and   Prf = 0.9   are   Prandtl   numbers; 

y = 1.4 is the specific heat ratio, and Re is the 

Reynolds number. 
The system (1.1) has been written in dimensionless 

form: the components of the relative velocity vector v 

have been divided by the characteristic value V^ , the 

density by p^ , the pressure by p^V^ , temperature by 

V* I Cp ( Cp is the specific heat at a constant 

pressure), and the linear dimensions by the 
characteristics length L. 

The turbulent viscosity coefficient \Xt is calculated 

using the two-equation (q-G>) model of turbulence 

[26]; the quantities q^and CO are related with the kinetic 

energy of turbulence k and the dissipation ratio S: 

q = kV2, CO = s//r. In dimensionless form (q divided 

by Vx,    CO    by Vx IL) the system of equations of the 

[q — co) model in rotating cylindrical system of 

coordinates has the form : 

dU.    OF.    8Gt    8E.     „ 
—'- + —- + —- + —--K, 
dt     dx     dr     5cp 

(1.2) 

FI=FH-Ftv,    Gt=Gti-G!v,    £,=£„-£„ 

Ar=Txrvx+xrrvr+xr(pv(p+—— 

A   = X    V   +X   V  +X    V   + 

P = J—pT, 
y 

Vx+vf+v^-(Qr)2       p 
e = p + 

H dT 
Pr rdq>' 

Y-l 

n = n, + nt, Pr     Pr,    Pr 

U,= 
pq 

pco .F* = 
pqvx 

PC0KX 
>G„ = 

pqvr 

p(i)Vr 

/:=■ 

Re 

dq_ 

^"dx 
da 
ox 

E«=- 
pq\ 
p»% 

Re 

dq 
vq dr 

da 
M-., dr 

8q 

F 1 ^ rdq> 
utv Re 8a 

M-co rdw 

Here, t   stands for time , p - for density, . p - for 

pressure, T  for temperature;  vx  ,vr  ,  V    are the 

physical components of the relative velocity vector along 
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K, 

-pqvr - Re"1 u, 
Sq 
dL+P®qL c pP     2divv    } 

2   I,   "' 3   co 

'^"Re'v^+pm,fcrc p^djvv^. 

S£/    5F    öG    dE     - 
 + + + = A 
Dt     dl    dr|    dC, 

(2.1) 

^ = ^+]^S  ^=^+^--  ^t=ReCMDpi- 

D = 1 - exp(- Re apq—-), 

D = 2 
5x 

+ 
5r 

2    / 

dv9 

rdcp 
+ 

dvr    dv„ , —L +—- I + 
dx      or öx     röcp 

dv9    dvr    v<p 

dr     rScp      r 
— (div v) 

3 

divv = (—^+ —; + ^) 
öx     rör     rccp 

Here, tfn is the distance along normal to the wall. The 
values of the constants entering into (1.2)as follows: 

C^ = 0.09, C,=0.045 + 0.405D, C2=0.92 

a = 0.0065,   Pr =1,   Pru=1.3. 

2. Numerical Method 

We will now describe the main features of 
numerical methods construction with reference to the 
example of system (1.1); for (1.2) the difference scheme 
is similarly constructed. 

The initial system of equations (1.1) is written in 
the new curvilinear coordinates 

£, = l(x, r, q>), Ti = r\(x, r, cp), C = £,(x, r, <p), 

retaining the divergent form: 

The metric coefficients which appear in (2.1) are 
expressed using the formulae 

Sr = A^C -%%)> ^ = J^l ~ WO' 

£ = AW - rv<Pt\      % = Ax ft - xft), 

Q^Jix^-x^) 

J = 
d(x,r,(p) 

We shall use the generally accepted indications 
when constructing the difference scheme: a superscript 
n refers to the instant of time t = m, where T is the 
time step, while integer subscripts refer to the value of 
the function at the center of a computational cell, and 
two integers and a single half-integer refer to the value 
of the function at a cell boundary. Writing (2.1) at the 

(n +1)    th time step, we carry out linearization with 

respect to the values at the n th time step (see [ 3 ] ). 
We will write the resulting difference scheme in a form 
that is convenient for using the iterative Gauss-Seidel 

method along a line £,,€, = const 

(A£ = Ar| = AC = l). 

(/ + A[A+ +A~+ V„fl+ - V„£- + C+ + C- - 

-D + 2(A,+CV)-A,V,BV])AU^ = 

= xZ,Lk+xJ,J,k[(A+
+A)AU^k + 

+(A-+A,)M%JJC + (C++CV)AU^ + 

+(C~+Cv)AU?fk+]] (2.2) 
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-/,/,* -J 
BF    dG    dE 

dt,+ dr\+ ac 
',/,* 

AU"p = Un^p-Un,     A/ = /;,,.+u-/},,,„ 

* x]'i,j,k ~ *i,j,k      *i,j-l,k 

where p is the number of the "internal" iteration. The 
Jacobian matrices in (2.2) have the form: 

A = ^- = A+ - A' = S, AtS'1 - StAzS~], 
dU 

'i,"\~%     ~v^% 

B = ^ = B+-B-=S,A+X-S1]A-X 

du ? ? ?     c c c 

A=2(|A|±AX Av_—, Bv_ — 

C  = 
dEv        _ dK 

5Ü7'   ~äü 

Here,     A^ ,A„ and A? are diagonal matrices 

composed of the eigenvalues of the matrices A,B and 

C; |A| is a matrix composed of the absolute values of 

A; Sj=, S^   and   S^   are   transformation   matrices 

leading to the diagonal form. The splitting of the Jacobi 
matrices and the use of upwinding (in accordance with 
the sign of the eigen values) differences [ 25 ] enable 
one to increase the stability of the difference scheme. 

The quantities Un+1 (for known Z"Jk) are found from 

the system (2.2). The direction around the computation 
domain was chosen as follows: for each fixed value of 
i (starting with  / = 1) we calculated the values of 

Ail"jk, k = 1,2, ,^max; we then passed on to the 

new layer (/'+ 1). 
The matrix of the operator on the left side (2.2) has 

a block ( dimensions 5x5) tridiagonal form, and its 

inversion (determination of AUlLk, 

j = l,2,....,/max, / and k fixed) is carried out by 
means of a three-point matrix sweep. In the case of 

periodic (in j) boundary conditions for the inversion of 
the matrix it is necessary to use cyclic sweep formulae. 

The method of calculating of right side of Z"y- k is 

described in detail in [ 27 ]. The space derivatives in the 
viscous terms are approximated by central differences 
with second-order accuracy. The "inviscid" terms are 
calculated in terms of the flux vectors on the cell 

boundaries (the derivatives with respect to £, and C, are 
similarly calculated; accordingly , we will drop the 
indices / and k): 

faGY   G--G" 

v^y, 
_  VJj+l/2 * j—1/2 

Ar| 

To calculate the flux vectors, we use piecewise 
parabolic parameter distributions satisfying the 
condition of monotonicity (for linear system) [ 3,24]: 

Uj+v2 = U"+S^ 

UUn=U"j-S^ 

l+(p, ,?.    1-cp „..-> 
—- A Wj + —- V Wj 

4 

1 + cp 

4 

1-cp 
VW,+ 

4 '      4 
AW, 

A Wj = min mod( A Wj, bV Wj), 

V Wj = min mod( V Wj, M Wj) 

AWJ=S-;A^J,    vWj = s-;y^unj 

3-cp 
\<b<b       b A — *^ — '■'max '        max 

1-cp 
, cp<l. 

min mod(x,y) = 
0, xy<0 

s/g77(x)min(|x|,|(/|),  xy>0 

where Uj+V2 are the values of U" on the right and left 

of the face of the cell with number j + 1/ 2, 

respectively, and in the n    th time layer. From the 

values of Uj+V2 and Uj+m using the procedure for 

solving the problem of the breakdown of an arbitrary 
discontinuity [9,10], we calculated the major quantities 

from which the fluxes   Gj+1/2   are  computed.   This 

method of approximation does not require the 
introduction of terms with artificial dissipation and 
makes it possible to obtain stable solutions with second 
order accuracy. 
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3. Third-order accurate in time integration scheme 

The method presented in Sec. 2 is a second order 
accurate in space (third-order accuracy can be achieved 
in one-dimensional uniform grid) and first-order 
accurate in time. Accuracy in time may not be crucial 
for the computation of steady-state solution by time- 
dependent method, but for computation of unsteady 
flows it may be desirable to increase the order of 
approximation in time. In this section we will describe a 
third-order accuracy in time scheme for integration of 
Navier-Stokes equations. Our consideration will be 
restricted to system of 2D Navier-Stokes equations; 
extension to 3D dimensions and turbulence model 
equations is quite straightforward. 

A main attention will be focused on the 
approximation in time, the approximation of stationary 
part of equations being assumed to be known. In 
particular, the fluxes at cell boundary can be computed 
by formulae of Sec. 2. 

The 2D  Navier-Stokes  equations  in a  moving, 

coordinate   system   £ = ^(.r,f/,f),    r\ = r\(x,y,t) 
take the form (x,y - Cartesian coordinates): 

dU   dF   8G    n  + — + — = 0 
dt   di   an 

(3.1) 

U = U/J, F = (^U + ^XF + ^G)/J, 

G = (i]tU + T]xF + r]yG)/J, 

Pr    Pr,     Pr, 

where 

T„=(A. + 2n)vy+A.ux, 

^t = J(x11yt-y^xtX Sx=Jy„> Sy = -Jx,> 

Tit = J(y§x. - x^yt), Tix = -Jy?» ^ =Jx? 

From the considerations given in Sec. 4 of [28] we 
can now present a family of the third-order accuracy in 
time schemes for Eq. (3.1) (a - parameter) 

Un+l+a-U".      1 1 
i.I         i_J_   .  J_ yn+\+a    .   J_ -yn     _ /-v 

T 2   u 2   iJ- ~   ' 
(3.2) 

Uu-Uy    3a + l 
T 6a 

+ 
3a+2 Z". = 0 

6(a + l)   ''; 

1 
6a(a + l) 

(3.3) 

F = Fi-Fv,G = Gl-Gv 
where 

v = 

p pu " 0 " 

pu 

pv >Fi = 
pu2+p 

puv ,FV = 
T 

XX 

Xyy 

e _(e + p)u_ AJ 

Gi = 

pv 

puv 

pv2+p 

(e + p)v 

,GV 

P( 

1 1 u  +v 
) + 

y-1 

" 0 " 

1 Xyx 

Re Tyy 

AJ 

\l = \l,+\lt, 

ry _    -M+1/2J M-1/2J + ^^+1/2       ^ij-l^ 

At) 

Third order approximation in time of scheme (3,2), 
(3.3) can be justified by expansion in Taylor series at 

t = (« + l)r. The scheme (3.2), (3.3) for linear scalar 
case is unconditionally stable if (X>0 provided that 
approximation of the space derivatives satisfies some 
conditions [28]. Note that discretization, based o the 
piecewise parabolic distribution (2.3), meet these 
conditions. 

The solution at (n +1) th time level can be found 
after two steps: at first (predictor) step we obtain values 
jjn+ +a   ^jjn+ +a   can ^g  treated  as  a  approximate 

solution att = (n + l + a) r), at second (corrector) step 
we obtain the solution at the next time level. 

Eq. (3.2), (3.3) represent a set of nonlinear 
equations. To solve this system some iterative approach 
can be used. In the present paper iterative technique is 
based on Newton method. For sake of brevity, we 
consider Eq. (3.2); iterative process for (3.3) is 
constructed similarly. 
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Assume Um+Ua-P is an approximation to U"++cc, 
when v=0,Un+l+a-p = U". Having written (3.2) for 
jjn+\+a,p+\^ we carfy Qut ijüearization ^h respect to the 

values JJ"+x+a'p [3,29]. The resulting difference scheme 

can be write in the following form    (Al; = Ar| = 1); 

[/ + -T(V5/4+ -\A~ - V?A54 + 

n+l+a,p +vnß
+-A^--A11v11ßjA^; 

/jn+l+a,p _ Qn 

-T[-^ ±+Uz^p+Z°J)]   (3.4) 

where 

AjTn+l+a,p _ T"jn+l+a,p+l _Tjn+l,p 
AUi,j — Ui,j Ui,j 

3F 
dXJ 

W- = S,(At-A-e)S:,=A+-A-, Av = 
ÖF„ 

^v»5     "6^5 -      v 

B = S = Sn(A;-A;)S^B+-B-,Bv = 
ÖG" 

au auT 

Values      AU"JUa'p     can be  found  from  the 

solution of the linear system (3.4). The iterations are 
performed until the right-hand side of (3.4) is driven to 
zero. 

In present method the inversion of implicit operator 
in left-hand side of (3.4) has been carried out by Gauss- 
Seidel line method. This approach described in detail in 
Sec. 2. 

4. Computed Examples. 

Now we will present some computational results 
obtained by this numerical method. 

A steady-state solution was obtained by the time 
dependent   method.   The   scheme   parameters   were 

(p = 1 / 3 and b = bmm. Typical value of the Courant 
number (constant for each cell) was CFL=50-100. The 
solution was assumed to be stationary if the initial value 
of residual had decreased by 3.5-4 orders of magnitude. 
Algebraic Badwin-Lomax turbulence model [30] and 

two-equation (q — co) turbulence model [26] were 
employed.. 

Figures 1 - 3 show the results related to the flow in 
an axisymmetric U - duct, which was experimentally 
investigated in [31] . Computational grid consisted of 
122x82 nodes (fig. 1). The flow parameters used in 
calculations corresponds to the experimental conditions: 

Mout =0.0925, Re/,=105. Figure 2 shows the 
comparison of the static pressure distributions between 
measured data and the present computations. Skin- 
friction results are compared in fig. 3. Note, that 
Baldwin-Lomax model indicates large separation 
regions both on the inner and outer duct walls while 

(q-G>)  model predicts relatively small separation 

region on the inner wall at 9 ~ 180 . 
Computed results [36] for viscous flow with swirl in 

a swan necked annular interstage duct are shown in fig. 

4  -  6.   Calculations were  made for   Pout = 1   atm„ 

Re,, = 2-105 and swirl angle ß = 20°. Figure 4 shows 
constant pressure contours. The comparisons of 
computed skin friction coefficient (nondimensionalized 
by edge dynamic pressure at inlet) and total pressure 
distribution with experiment [32] are shown in fig. 5 
and fig. 6. 

Figures 7- 9 show results of transonic RAE 2822 
airfoil calculations [37] compared with experimental 
measurements [33]. Computational grid consisted of 
192x62 nodes is shown in fig. 7. Calculations were 

performed for Mm = 0.73, Re = 6.5- 106and   angle 

of attack at 3.19 . The computed surface pressure 
coefficient and skin friction coefficient 
nondimensionalized by edge dynamic pressure, are 
shown in fig. 8a and fig. 8b correspondently. In front of 
the shock computed results agree very well with 
experiment, but behind the shock skin friction for both 
turbulence models is not properly predicted. Computed 
Mach contours are shown in fig. 9. 

Fig. 10 and 11 show the computed surface pressure 
distributions [37] in comparison with experiment [34] 
and Mach contours, respectively, for an NACA 0012 

airfoil at Ma0 = 0.799, Re = 9-106  and angle of 

attack at 2.26°. Large difference in the shock location 
between Navier-Stokes and Euler solutions (fig.9) is 
caused by strong viscous-inviscid interaction. 

Figures 12 - 15 are related to the 3D numerical 
simulation [38] of inclined shock wave interaction with 
boundary layer on a cylinder. Computations grid 
consisted of 61x35x34 nodes (fig. 12). The free-stream 

Mach number was assumed to be equal to Mx =2.95, 

the Reynolds number Re = 1.45-10 m~ . Algebraic 
Baldwin-Lomax turbulence model was used in this case. 
Experimental oil-flow patterns [35] and computed 
surface limiting velocity vectors are shown in fig. 13. 
Measured and predicted static pressure distributions on 
the surface of the cylinder in the planes of symmetry 

(p = 0 and (p = 180° are shown in fig. 14. Fig. 15 
shows the   comparison of the lines of constant static 

pressure in the plane of symmetry (p = 0 between 
measured data and the present computation. The 
calculated distribution reproduces the structure of the 
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flow quite well, including the system of the incident and 
reflected shocks. 

Developed method allows to obtain a quite accurate 
solutions of the test problems on medium size grids. In 
the next lecture we will present the application of this 
method to solution of practical problems in 
turbomachinery. 
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Fig. 3        Variation   of   Wall   Shear  Stress 
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Fig. 4     Static Pressure Isolines ( Coakley model ) 
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Fig. 5     Friction coefficient Cf 
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Fig. 6   Total Pressure Variation Across Duct At x/h = 1.878 (a) and x/h = 2.212 (b) 

Swirl Angle ß = 20° 
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Fig. 7 192x62 grid for RAE 2822 airfoil. 

Baldwin-Lornax model 

Codkley model 

D     D        experiment P-?J 

Baldwin-Lotnax model 

Coakley model 

D     D        experiment ß3J 

(a) pressure distribution (b) skin friction coefficient 

Fig. 8 RAE 2822 airfoil, Mm = 0.73, Re = 6.5-106, a = 3.19° 
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Fig.9 Mach contours (Coakley model),   RAE 2822 airfoil, A/„ = 0.73, 

Re = 6.5-106, a = 3.19° 
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Bal&vin-Lomax model 

Coakley model 

Euler equations 

O   O   O      experiment [34/ 

Fig.10 Pressure   distribution, NACA   0012   airfoil,   Mm =0.799, 

Re = 9-106,a = 2.26° 

Fig.ll Mach   contours   (Coakley   model),   NACA  0012   airfoil,      Mw = 0.799, 

Re = 9-106,a = 2.268 



3-15 

Fig. 12 Computational   65x35x34 grid 

XyCM 

Fig. 13 Experimental oil-flow picture (a), 
computed surface-velocity pattern (b) 
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Fig. 14 Static pressure distribution on a cylinder 

Separation bubble 

Y°      7 
Separation bubble 

x, cm 

X, cm 

Fig. 15 Measured (a) and computed (b) static-pressure contours on the windward plane cp = 0° 
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Abstract 

Mathematical models for gas turbine engines and 
installations components flow passages based on real 3D 
geometry of all components of flow passage in particular 
on spatial shape of blades are considered. 

The models are based on numerical solving of 
unsteady Euler equations and so it allows to simulate 
some unsteady transitional functioning regimes of 
engines and installations together with steady ones. The 
models take into consideration the viscous losses, 
leakages in axial gaps and tip clearances, cooling air 
injection and selection. 

The first level mathematical models are based on 

2D steady and unsteady methods on 5, and S2 

surfaces. Some features of numerical algorithms based 
on these methods are considered. 

The second level models are based on 3D 
approaches anywhere in computational domains 
excluding the middles of axial gaps between 
neighboring blade rows where for the simplification of 
the problem the averaging in angular direction is 
fulfilled. 

t 
z,r,<9 

time 

Nomenclature 

cylindrical coordinates 

curvilinear coordinates 

£,-,£,.,...-    partial denvatives —, —... 
dz  dr 

angular velocity of rotor 
velocity vector components in 

cylindrical coordinate system 
density 
pressure 
total energy per volume 
specific internal energy 
temperature 

CO 

cp,cv- specific heats at constant pressure, 

volume 
m density of sources of mass 

z 'ri  <p dissipative forces components 

h specific enthalpy 
s specific entropy 

V     - velocity vector 
R     - gas constant 

Introduction 

Gas turbine engines and installations development 
depends to a great extent on the successful solution of 
problems of flow passage aerodynamics which may be 
fulfilled by numerical simulations using modern 
powerful computers. Experience of design gained at 
present time showed the urgent necessity of wide 
employment of mathematical tools of high complexity 
(2D and 3D steady and unsteady models). These models, 
accounting real flow passage geometry, viscous losses, 
leakages in axial gaps and tip clearances, selection and 
injection of cooling air are considered in the present 
lecture. 

The lecture begins with the description of 2D 

approaches based on the consideration of 5, and S2 

surfaces. The method of such type seems to be first 
considered in [1]. Mainly the approaches based on 
streamfunction (or vorticity - streamfunction) 
formulation or streamline curvature procedures were 
employed [1-8]. 

The method described here arises from work [9] and 
is based on solving of averaged in angular direction 
time dependent Euler equations. Some differences are 
that the basic equations are written in the another form 
and the conditions at the boundaries between 
axisymmetrical flow and bladed domains are 
considered. (The importance of the consideration of 
such type of conditions was noted in [10]). This method 
was widely used in design and investigation of engines 
and installations of a number of firms (see also, [16], 
[17]). It has some advantages of noted methods, among 
them there is the possibility of simulation of some 

Paper presented at an AGARD Lecture Series on 
"Mathematical Models of Gas Turbine Engines and their Components' December 1994. 
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unsteady phenomena, lacking of problems in cases 
shock waves are present in flow or in transonic flow 
regimes where the steady equations change character 
from elliptic to hyperbolic, the possibility of further 
development of these methods by including viscous 
terms. 

Then an approach, based on using 3D Euler 
equations is considered. In the middles of axial gaps the 
averaging of parameters in angular direction is fulfilled 
with conservation of mass, momentum and energy 
fluxes. Right hand sides of these equations include the 
terms that describe viscous losses effects, cooling air 
injection, leakages, etc. Similar approaches were 
considered, for example, in [11-12]. 

Some   important   details   and   features   of   the 

algorithms are presented in appendices   A   (for   S2 - 

approach) and B (for 3D one). 
The capabilities of described mathematical solvers 

are demonstrated by some examples of flow fields 
calculations in flow passages of aviation gas turbine 
installations. 

1. Formulation of the problem 

U = 

{p] 1      pU     1 
pu pu2+p 

pv ,   F- = F{U) = puv 

pw puw 

{e) {{e + p)u) 

G=G(U) 

pv 

puv 

pv2+p 

pvw 

{e + p)v 

The typical flow passage of aviation gas turbine 

engine in meridional plane   \z,r)   is shown in fig. 1 

(the domain ABCD, including core EFGH and by- 
pass duct FUG ). Either whole flow passage or some of 
its components may be considered. The initial data are: 
full 3D geometry of flow passage (including blades, 
nozzles, etc.), angular velocities of rotors, specific fuel 
consumption and heat of combustion, air cooling 
scheme. It is supposed also that gas leakages are known. 
The boundary conditions include total parameters 
(pressure, temperature) and velocity direction 
distributions at inlet   AB and static pressure at outlet 
CD. 

Depending on the location in the flow passage 
either the absolute cylindrical coordinate system (stator 
regions) or relative one (rotor regions) will be used. 

Gas turbine engine components flows will be 
considered using Euler equation with right hand source 
members for accounting of viscous losses, blowing in 
and blowing out of cooling air, leakages, etc. In 
cylindrical coordinates (Z,A,cp) the conservative form 
of these equations is: 

dt dz I'- d (rU) + ^(rF) + ^(rG) + ±J-(rH) = h(i.l) 
l_d_ 
r dcp' 

H=H(U) 

pw 

puw 

pvw 

pw2 + p 

(e + p)w 

rm 

rmVz +fz 

rmVr +fr +p + p{w + G>rY 
db 

rmVv+fv-pv{w + 2or)-r2p— 

rmH' + co r pv-r pw 
cko 

~dt 

p - is density, U,v,w - relative velocity components in 
cylindrical coordinate system,    CO - angular velocity of 
relative frame of reference, p - static pressure. 

The (1.1) system is closed by state equations: 

p = pRT (1.2) 

ir)+
l-(u 2 +v2 +w2, (1.3) 
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where T - absolute temperature, 8  - specific internal 
energy: 

e = jCv{x)di + e0,Cv>0 

The function e(7")  may be specified using the 

dependence  cv   on  T   (or  cp=cv+R     on  T). 

(Vz,Vr,Vv) -cooling air velocity components (at the 

cooling locations) in the reference frame. 
H'- total enthalpy of cooling air in the same frame 

of reference. It was supposed for simplicity that the 
cooling air is the same gas, as the main flow, but with 
different parameters (total pressure, temperature) and 
hence the state equations (1.2), (1.3) also take place for 
this air. 

Cooling air injection, which really is fulfilled 
through slots, is modeled by spatial distributed mass 
sources with density rh. The distribution of m in space 
is defined using the cooling air mass rates at different 
places of flow passage. In some cases ( for example , in 

*Sj and S2 formulations) the density tfl may be 
distributed by the next way. For each kind of air 
injection with number /': 1 < / < / (for example, for a 
number of perforation slots) it's specified a    spatial 

distributed function a, , where a, is a mass 8/77,. of 

injected air in infinitesimal volume 8 V divided by the 

mass 8/770 of "primary" gas in this particle 5V 
("primary" gas is one that goes from some inflow 

section). The distribution of a,- may be easy fulfilled 
using a stream function (in two-dimensional cases). 
Then mass concentration of cooling air of injection 
with number / is 

C, = 
a,- 

,/ = !,...,/. 
l + aj+.-.+a. 

Mass  concentration   c0 of "primary" gas may be 
obtained from the equation: 

c0+c1+...-i-c/ = 1 
Using the conservation of primary gas mass: 

-Z7{rpc0) +—{rpuc0) + — (ipyc0) + 
dt oz or 

+-—{rpwc0) = 0 
r cxp 

together with the equations (1.1) it is easy to obtain the 
expression for rm 

rm = rpc0 
da, da, —L+... + —- 
dt dt 

(1.4) 

d     d       d       d       Id 
where  — = — + U— + v— + w  

dt    dt      dz      dr       r dcp 
substantial derivative. 

The setting of rm  by expression (1.4) is very 
convenient because there is no difficulty in defining the 

functions a,- ( when the stream function exists). Also it 
is easy to approximate the derivatives in (1.4) so that the 
increasing of total mass flow rate will be achieved 
without any losses and errors (e.g. if we add 2% of air 
to main flow, then mass rate at the exit will exactly 2% 
more than at the inflow section). The approach 
described above may be applied also for taking off the 
air. 

The terms (Ur,0 are included in (1.1) for 

accounting of viscous losses effects. 
If we set: 

[f,JnU) = - 
rO 

2 2 2 u +v +w 
{u,v,w)       (1.5) 

then using (1.1) one may derive the equation: 

rpT— = rm{H'-h--(v2
2+Vr

2+V*) + 
dt { 2v z      r      v' 

1 +- 
2L 

\v2-u)2
+(vr-v)2

+(vv-wy +/tj> 

where h = s + RT - specific enthalpy,  S - specific 
entropy. 

Using (1.4) one may obtain another form of this 
equation: 

'prf = rpc0±l[H;.-h-fo+V]+Vi) + 

(V,-u)2+(Vri-v)2
+{Vv,.-W) 

1 
+ - 

2 

cfa, 

dt 
AD 

where parameters Vz,Vr,V9 and  H' with index / are 

corresponded to kind of air injection with number / . 
According to these equations entropy changes due 

to changing of mixture temperature, losses in mixing 
process, etc. 

A term <I> in (1.5) is used for simulation of viscous 
losses effects. Let <T be a prescribed entropy growth 
(from some initial point to current one) due to viscous 
losses. The function a must be spatially distributed in 
accordance with the notions of the locations of entropy 
growth (e.g. near solid walls, trailing edges etc.). The 
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values of these losses must be defined using either 
experimental data or empirical correlations or boundary 
layers calculations. 

Then one may put 

<D = p7" 
ob 

dt 
(1.6) 

52 surfaces formulations, when the equations (1.8) are 
averaged and more simple 2D equations are obtained. 

In another approach the full system (1.8) is solved 
and the flow parameters are averaged only on some 
surfaces located in the middles of axial gaps between the 
neighboring vanes and blade rows. (See, for example, 
[11], [12], [16], [17]). 

where 
dt 

is substantial derivative and may be 

approximated by any way. 
Governing equations (1.1) are solved using a body 

fitted coordinate transformations: 

£ = £(z,r,(p): 

r| = r|(z,r,cp), (1.7) 

The system (1.1) may be rewritten in the next 
conservative form 

dt 

'rU^ 

V 
+ ■ 

^ TTI 
\A 

R,z+G^r+H-^ + 

+- 
dr\ 

~ rrl Fr\z+Gr\,+H--r\v 

+- 
dt, 

r 

rrl-    Y\       h 
FCt+G^+H-^\\ = - (1.8) 

2. Axisymmetrical S2 -surface formulation 

At the beginning of the 50-th Wu [1] (see also [2- 
8]) suggested a method of solving 3D inviscid flow 
equations in turbomachinery by solving 2D problems on 

two families of surfaces S: and S2 . This method is 
widely used in design applications because it requires 
small computational efforts compared with 3D methods. 

An S2 - approach described below rises to work [9]. 
Governing equations that describe gas flows in hub- 

to-shroud S2- surface may be obtained from 3D ones 
either by averaging in angular direction or by 
considering the flow between two close stream-surfaces. 

Gas flows are considered in channel restricted by 
two solid surfaces and containing blade rows (stators 
and rotors). The computational domain may be divided 
into sub-domains of two kinds. 

The flow between neighboring rows (in axial gaps) 
is assumed to be axisymmetrical. One may derive the 
equations describing gas flows in these sub-domains 

from (1.8) supposing:   L, = q>, 

ö(£,T|,C) c    „ 
where J = —-, c , and terms  t,z,C,r,... denote 

d{z,r,q>) 

the partial derivatives —— , — ,■•• 
dz  Or 

For modeling transient operations in engines one must 
add also the equations describing the acceleration of 
each rotor: 

j^- = Mt-Me+Mt 0 dt 
(1.9) 

where M is torque and suffixes t,C and /'refer to 
turbine, compressor (fan), corresponding to this rotor 
and other sources of torque (for example, forces, using 

for the initial acceleration of rotor), J0 is the polar 
moment of inertia of the rotor. 

The solution of unsteady system (1.8) (maybe, 
together with (1.9)) even for a number of stages of the 
turbine or compressor is a very expensive task. For the 
applications it's sufficient in many cases to use some 
"averaging" procedures. Two types of such averaging 

will be considered. The first type corresponds to S, and 

£   =T|   =0, —s0: S<p 'l<p ' g£ 

dt 

rU UJ(^,)) + 

+- 
dr\ $(*u+*.,)] = 7 (2.1) 

The governing equations in bladed sub-domains 
may also be considered as a special case of common 

equations  (1.8).   Let   {t,,r\,0   be  such  curvilinear 

coordinates  that  the  surfaces  defined by  equations 

C, - const  are stream-surfaces located between two 
neighboring blades. Then the equation takes place: 

uQz+vQr+w-(:v = 0 (2.2) 
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A blockage factor in angular direction may be 
defined by the relation: 

* = 1/C, (2-3) 

It's    supposed        that    functions    z(^,T],Q0), 

KS.TUCo). ^te.^Co)  at the corresponding value 

C, - C,0   are known that is the stream-surface   C = Co 
is given. 

Then one may choose two different ways.  The 
approach used in [9] corresponds to the choice of other 

coordinates (£,,T|) satisfying the relation 

$„ = ^=0 <2-4) 

Then: Z<- = r^ =0,cp? = k, 

J 

J 

z^   z^ 

-rkz^, 

rr\ f = -rkzt. rnr _ = rkz 

^ = rkr 
J 

J 

J 
0     (2.5) 

<, -r 
<P5 

y 

<, = -r 

The equation (1.8) with accounting of   (2.2) leads to 
form: 

'rU^ 
dt 

—{ 
dx\K 

\J J 

+ - y^+GtlJ^y + Ä,, (2 

where 

Ä,= 

y 

' v 

y 

op 
o 

^     d 
-p 

(r      \ 

dC J c, 
ydC,J UL,\J J 
(dp\       d(rr 

(r   \ 

d^)   HdC 
0 

The terms 

JLlLr  I     ^ sfr   A 

y c, 
\J  J 5C 

e. 

are naturally calculated using the identities 

Q f JC   \      x ( ™  \     P (rT   \ ^V-f^V-f^ 
dc\) )   dx\\J )   &\J j 

= 0, 

d_ 
j y-f(27) 

3C 

J5_ 
yj an 

^ A 

v'y 
+■ 

<?C 
V 0. 

The equations system (2.2), (2.6) serves for finding of 

unknowns: U  and 
dp 

This approach has the following shortcoming. One 

fdp^ 

dp). 
—    lr ad 

may show using (2.2), (2.6) that    ~z~ I depends on 

dp dp    „   .„ 
derivatives   —, —.   So if one excludes 

dl  dr\ v 
(2.6) then this system would be written in 
nonconservative form which may cause some difficulties 
in trans- and supersonic flow calculations with strong 
discontinuities. 

One may overcome this difficulty by choosing 

coordinates (£,r|) so that instead of (2.4) the next 

relations will take place: 
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r|zCz+r|,C+ — TI9C9 = 0 

(2.8) 

That is the surfaces   £, = CO/7Sf and £ = const 

are orthogonal, and the surfaces    r| = const    and 

C, = const are also orthogonal. 
Then instead of (2.6) one obtaiiua system: 

( 

8t J  I   % 

( 
-\R,z+G^+H-l\\ + 

J 
z*    z„ 

<P5     (P, y 

y = -^(zt,-''2/[Cz<pJ, 

d    r 

dr\\ 
-j\FT\z+Gr\r+H-r\v 

where as before 

= - + /?, (2.9) 

^- = -Apc(/-|-/-2ACr(pJ, 

^ = npc(z?-/-2AC2(pJ, 

The system (2.9) together with (2.2) serves for 

and 

( 0 

hx = 

J 
dp 

"'* 

r^fdp" 

J UcJ 

-p 

v y^ 

5C 

P— 

rC, 
V- 
(r \ C, 
v'y 

rr)'dc\J *) 
are calculated using (2.7). Metric coefficients may be 
found by equations: 

= r/r 
r«     'n y 

1   ^ 
<P5     <Pr, 

(2.10) 

defining of   U   and 
5C. 

. It was the approach that 

was used in the computations. Note that the equations 
describing flow fields in axisymmetrical subdomains 
and in bladed ones are different and so at the boundaries 
of these subdomains it is necessary to consider special 
conditions (see Appendix A). 

The approach described here and based on solving 
of unsteady Euler equations allows to obtain stable 
solutions (at sub-, trans- and supersonic conditions in 
absence or presence of shock waves) as well as modeling 
of some unsteady phenomena in multistage 
turbomachines. 

3. S, - surface flows calculations formulation. 

Together with S2  surface one also considers a 

blade-to-blade surface Sj. The projection of this surface 

on the meridional plane  \Z,r)  coincides with the 

projection of S2   surface streamline. It is supposed that 

this Sj surface obtained by rotating of the streamline is 
a stream surface. 
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The governing equations on    5,  surface may be 
obtained from (1.8)  using  some  special  curvilinear 

coordinate (^,t|,(^). Let the surfaces r\- const be 

stream-surfaces,- then one may consider an orthogonal 

coordinates system \m,r\,(p). These coordinates are 

related    with    cylindrical     ones    by    equations: 

m = m(z,r), r| = r|(z,/-),(p = (p and it will be 
supposed that the coordinate m is arc length along the 

meridional projection of the 5, surface: r\ = r|0. 

Then along Sj (after a choice of the direction of 

increasing of T|) the following relations will take 
place: 

d(/77,r|,(p) r 
—, Y = b  , mz=zm, r|z=—f, 
d{z,r,(?) b 

ri]
=bZn,>Zri brm,zi +r~ = 1, 

where b is Lame parameter corresponding r\ (the 
layer thickness). Considering the superposition of 
transformations 

(z,r,(?) -> (/77, n, (p) ->• (^,TI,C) 

one may derive the formulae (along St): 

J 
Z. 

J       " J 

j =~bmV J = -'Sb 
( 

\r 
(3.1) 

!2k 
J 

n\r — \W = 0, (3.2) 

d_ 

'*>, 

'*, 
J 

V 
\ ' J 

3r| 

^     d + — 

J 
+ - 

&> 
-JT\ = -.   (3-3) 

*!« 

V ac V J J 

replacing second and third equations of (1.8) by their 

linear combination (multiplying 2d by zm and 3d by rm 

and adding) the new system may be obtained instead of 
(1.8): 

dU    OF    ÖH     - 
— + — + — = h 
dt     dl     dC, 

where 

U 
pU 

-pw 

(3.4) 

J 

J        m{  J  f J      H  J 

t^f = bml, ^5. = ^, ^L = _/Äp5. 

Using the identities 
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pU 

p 
rt   \       ft 

y 

pw 
/, 

y 

</+ 

(/+ 

V 

C 

y 

iv 

\w 

(e + p) *,„ ( 
U + 

\w 

+ P 

+ P 

'*. 

(f.  \ s. 
KJ J 

w 

term h     in    (3.4)    by h+b/j,    where 

b ={0,b],b2,bj. 
Let 

G^ = ?U//W+2M 

1 Ö£ 
X + 

b d?, 
U 

U\ — \ + w 
(i   \ Z, 
yJ J 

+ w V \_db_ 

bdC, 

Then 

H = 

pU 

P 
X (r \ 

U + w 
KJ)   J 

pw 'C 

U + 

u+ 

r *^9 \w +p 

(r   \ c. 
K> J 

w 

(e + p) *,n u + 

+p 

K J 

21. 
J 

bL = ^_ 
J~ dt, 

d 

( l    ) 
v r    ) 

+ 

ac 

y 

r_( 1    \ 

A r       J 

1 dr ±db_ 

J     d^ 

d 
+— ac 

rj I    ) 
. I a(pmSm +<J<p<p      ^>9 

f 1 
+ 

ldr_ 
rdmC,fm 

o 

pi/{w + 2(or)f 

17/-+Pte 
/* >    * fr \ 

vA 
5 + — 

9C yJ j 

e = p 

<»2rpU\j\rm 

e + -p(u2+w2) 
2   V ' 

U = uzm+vrm. 

For accounting of viscous losses one may use either 
dissipative forces (similar to (1.5)) or add viscous terms 
to (3.4), ([13]).   In the last case one must replace the 

b^_d_ 
J ' dl 

( dT,      lsn. V 
K—-£m+K--—^ + 

dm r öcp r    J 

J\ r       J 
+ 

r 
+w— 

J 

( 

"<pm^>m 99  _ ^<P 

5C 
dT „ \dT\r 

5/77 r dq r 

+ U^j\amJ,n, +^me<A + Wj[°^n,  +CT
W-Cc 
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dT 
dm 

IdT 

r dq> 

v J 

rl9}dT+(Q9)dT 

KJ J % J    5C 

fig. 3. The function  r = r(m) and  £ = b{m)   were 

obtained using steady solution on S2 - surface. 
The approach with included viscous terms may be 

used for estimation of deviation angles and viscous 
("profile") losses. An example of viscous calculation 
(with algebraic Baldwin-Lomax turbulence model [18]) 
is presented in fig.4 (at r = const and b = const). 

o=A.flr/W+2n J M {   J   M 
'/rap ^ <pm 

v\- 

+r 

<pq> XdivV +2[i 

5C 

„    dr U 
+2(i- , 

(3/77  r 

divV = u+ V \w> + 

4. 3D approach with averaging in the middle of 
axial gaps. 

In this approach the gas flow within each blade row 
is modeled by full 3D Euler equations (1.8) . At the 
section located approximately in the middle of the axial 
gap the averaging of parameters in angular direction is 
fulfilled, and what is more, it is required that mass, 
momentum and energy fluxes through the "ring" from 
r to r + br are the same for both sides of this 
section. (It is evident that one may calculate these 
fluxes either in absolute or in relative frame of 
reference: if they are equal in one frame then it will be 
true also in another frame of reference). The averaged 
flow parameters at this section are also the results of the 
solution. 

5. The formulation of viscous problem on S2 surface. 

The described S2 - approach may formally be 
developed by adding viscous terms. For completeness let 
us now write corresponding equation system for 
"bladed" regions (in axisymmetrical domains the 
equations may be obtained from usual 3D ones by 

+ - 
ac 

X. (r \ 
U + C, 

yJ J 

w\ 

X =— (I (Stokes hypothesis), 

]X-   eddy viscosity, 
conductivity. 

K—  coefficient of thermal 

Some examples of using of Sj - surface approach 
are presented in figures 2, 3, 4. Fig. 2 shows an example 
of calculation of inviscid flow through the turbine rotor 
cascade (at r = var, b = var). The calculations of 
such type, that take very small computational times, 
may be used for estimation of shock wave losses and, 
maybe, deviation angles (in absence of extended 
separation regions). 

An example of inviscid unsteady calculation of flow 
through a turbine stage (at low rotor speed) is shown in 

setting: — = 0). 
cxp 

Instead of (2.9) we consider a system: 

dt 
—  + \Ft, + GZ,r+H -£_ 

(_       _       _i 
F^+G^+H-y]^ 

V r 

h    -    b 
= — + h, + — 

J      '     J 

where     U,F,G,H,h      hawthe same sense as in 

(1.1),     /?,     is the same as in (2.9)  , the metric 
coefficients        are        calculated        by        (2.10), 

b={o,b2,b3,b4,b5)
r. 

Let 
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<, 
Yi = 

<, 
IC,, 

(r \ C, 
KJ J 

ic^, 

cc = . '#♦£■♦ 
= A(^]+A 

E2 = 

dt,\ J J   dr\ J 

J y dx\ 

&, 

^ +  
J )    dr\ 

w 
aa =XdivV +2v-y3-2\x-y2y3 + 

J ~ d$ 

( dTc      dTc      lari    . 

y 

/■ +-/ 
y 

Sz dr r dtp r 

+ - 
5r| 

ar       ar 1Ö7" 1 
K — ri. + K — r\. + K T|m 

z or r o<p r 
+ 

r 
+-u 

J 

r 
+-v 

J 

<*ÖTU+0^.11,+0^-TU | + 

O„TI, +öA+^-\ | + 

+2fJ - [w£, + v£2 +w£3j. 

Then: 

J     BE, 

f 1 

dr| 
^Tlz+^^+O      -Tl - oK£, 

y ~as 
' 1 

+ 

on y 
«J«1!* +CT„rl,+^np-Tl(f 

b±=d_ 
J     dl 

a
VAz +°Vrir 

+(7
W-^cp   I + 

r      ( 1 

Here: 

ar   c 
dz~{ 3 r%z dT ^ n\z dT 

J   dl      J   dr\_ 

dT   ' 

dr~\ -a f^dT^+n]r dT 

_ y as    y an. 

\dT _ T \ ^<P ar   TI^ 5r 

J y a^ +T^i 
Let also:   A = XdivV - a «: 

_      a# a^ dw 
as as as 

„ du dv dw 

OT1 OT] Oil 

dr| 
— a   r\  +CT   ri +a    —n 1 \       <pz   lz tpr   If cpcp lip 

a 
D =—Y2Y3--y 

/■ r 
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B,=n ^ C + 
rrU 

YlD 
^dv_ ^dv_ 

+ J 8^+ J dx\ 
where 

w 
V— -Y2Y3^+y3ß2+Y2ß3> 

B2 = H ^i^k-'' divV = 
( 

\r dt, J J J 
+ 

Ä = H 

Then: 

ffc + 

w    ~     v n 
+Y2 2Y3 JsD 

a„ = XdivV + 

+- 
dr\ 

rx\z       rx\.       TI 
—i±u+—-v + —-w 

J J J 

X = LI 
3 

(Stokes hypothesis), 

eddy viscosity, 

+2(1 
U 

ft)Z du    rx\z du -y]A + 2yß„ 

a   = M/W + 

+2(x 
ft,r dv    rx\r dv 

-y2
2A + 2y2B2, 

<*w = XdivV + 

+2LI 
£<P dw    % dw 

J   d%+ J   dx\ 
+ 2]i--y\A + 2yß3, 

zr       ^ rz 

ft. du    rn, du 

J  dt,     J  dr\ 

fjz dv | AT|Z dv | 

-YJz^ + Yz^+Yißj, 

' ton   '   "^ tori 
The equations (5.1), (2.2) are system for defining of 

unknowns: U and 

6. Numerical methods. 

All described problems are based on unsteady Euler 
or Navier-Stokes equations. These equations may be 
solved by methods presented in previous lectures. 

Let us briefly recall the main features of used 
numerical schemes. These are monotone implicit 
schemes of second or third order accuracy in space and 
time. The implicit operator was used which allows to 
solve the linear systems of equations by scalar three 
diagonal solvers. The boundary conditions were treated 
implicitly. In unsteady calculations additional "internal" 
iterations were used. And in all cases the exact solution 
of Rieman problem was used at the cell boundaries 
(high order Godunov's scheme). 

7. Some numerical examples. 

G*P = <V = L1 

\r 

ft, dw    rx\7 dw 

J   dE,      J   dr\ 

<*«p   = <V   =  V 

4<P du    \ du 
—— + —- — + 
J d^     J dr\ 

y,yzA + yß,+yßz, 

A£, dw    n\r dw 

~7~dJ+~T~&n + 

Here a few examples of application of described 
methods are presented. 

First example is a flow through cooled high 
pressure 1 - stage turbine (fig. 5). 3D approach with 
averaging in the middles of axial gaps was used in the 
calculations. The cooling air injection effects were 
simulated by distributed sources of mass, momentum 
and energy. Viscous losses values obtained from the 
experiments with single vane were used for stator and 
some simple empirical estimations were taken for rotor. 
Used computational grid in meridional plane is 
presented in fig. 5. The calculated distribution of 
isentropic velocity coefficient (some function of static 
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pressure) along radius in axial gap is shown in fig .6 
(solid line). Experimental results of design office are 
marked by squares. Fig.7 shows a distribution of exit 

absolute flow angle (90° corresponds to axial flow). 
Solid line is calculated result, a line with squares are 
experimental data. Some features of calculated line near 
tip region are connected with tip clearance losses which 
were accounted using some 2D - surface calculations 
at tip section of rotor blade. Measured and calculated 
mass flow rate and turbine power were in good 
agreement. 

Another example is a calculation of gas flow 
through fan with mid-span shroud, low pressure 
compressor and by-pass duct (fig.8a,b). The results 
obtained by 3D approach are presented in figures 8-12. 
Fig. 9 shows pressure contours in meridional plane (at 
suction side for rotors and pressure side for stator 
blades), fig. 10 shows them at hub section and fig. 11 at 
tip section. Fig. 12 shows experimental (solid line) and 
calculated (squares) fan characteristic. 

The gas flow through almost the same geometry 
(but without blade mid-span shroud) was also calculated 

using S2 - approach. Used computational grid is shown 
at fig. 13. Calculated pressure contours and stream-lines 
are presented at figures 14, 15. It is evident from fig. 14, 

that used S2 - approach allows to calculate flows with 
strong shock waves. 

An example of steady flow calculation for bypass 
engine core is presented in figures 16, 17. The 
combustion process was modeled by sources of mass, 

heat. The S2 - approach was used in this calculation. 
Fig. 17    also    shows    good    resolution    of   strong 

discontinuities on S2 - surface. 
This lecture contains main problem formulations 

and main features of used approaches. Some other detais 
and other numerical examples will be considered later 
(in lecture 6). 

APPENDIX A 

Arbitrary discontinuity breakdown at the boundary 
between axisymmetrical subdomain and bladed one. 

As it was mentioned above, the equations describing 
gas flows in bladed subdomains and in axisymmetrical 
regions are different (see eqs. (2.1), (2.9)). What is 
more, small perturbances propagate in these subdomains 
with different velocities. Indeed, in bladed regions local 
acoustic   perturbances   propagate   in   the   direction 

perpendicular  to   grid   lines   £, = const   with   the 

velocities 
Ut ■ + a, where a - sound speed, 

and the quantities 
i^z    ^r   ^<P are calculated by 

v   J    '    J    '   J  , 

formula  (2.10  ).   In  axisymmetric   subdomains  the 

perturbances propagate with the velocities  — + a, 
c* 

where 
OK are calculated by ( 2.5 ), and 

= 0. It reflects in common the physics of the flow. 
J 

It is evident from above that, first, these boundaries 
are in common case the discontinuity surfaces and, 
secondly, it is necessary to set sufficient number of 
boundary conditions at these surfaces which depends on 
number of coming and leaving perturbances. In other 
words it is necessary to consider an arbitrary 
discontinuity breakdown problem at these boundaries. 

Let us first consider the boundary corresponding to 
leading edges. A treatment of the boundary conditions 
means that the usual arbitrary discontinuity breakdown 
procedure must be replaced by the special one described 
below. 

Let:   £, 
fi,z    Zr    ^<P 

,JJJ, 
coefficients     are     calculated     by     (2.10),     and 

where   the   metric 

X = | -^-,-^,0 I, where  — and —   are found 
J      J J J 

by (2.5). Let also N 
( <,    ^r   C, C^ be the 

) KJJJ 

unit vector normal to  stream-surface  C, = const 

where £*z   <r   ^9 are obtained by (2.10 ). All 
J      J     J 

parameters are related to boundaries of consideration. If 
it is necessary the corresponding right or left limit is 
used. The parameters at the bladed side will be marked 
by index   1 and the parameters at the axisymmetrical 



4-13 

subdomain will be marked by index 2. "Large" left and 
right parameters (at both sides of the surface) will have 
the indices"!, "and"/?". 

It's convenient to consider "leading triangle" drawn 

at fig.lA (it is easy to prove that three vectors £,,X,N 
lie on one plane) 
This triangle may 
be corresponded to 
some real 
"triangle" in blade- 
to-blade space. 
(Vector M is not 
necessary/ 

perpendicular to 2, 
and so the models 
with right blockage 

factor values k * 1 

may be considered). Let X be the unit vector which is 

orthogonal to £,  and 3c. Then the X- projection of 

velocity vector V may be eliminated from the next 
considerations       because       of      the       equations: 

(y2 . x) = (VL • x) = (VR • x). So below the vector V 

will be considered without its X - component. (If V0 is 

the initial velocity vector, then V - V0 - [V0 ■ x)x). 

Fig. 1A 

V M)1 
Let first -V ^ 1,    "2     2   ^ 1, where a is sound 

«VCS 

speed, c1 = (£•£). Then used in the present work 

relations at the leading edge surface may be written in 
the form: 

fc  i(vL-i)   i/l7 ff\2      i 
hL+- —+-{VL-N) =hR+- 

—\2 

(V4-9 
(Al) 

pL-p2+{pa) = 0, 

PL-P2-{°
2
)(PL-P2) = ° 

_    {VL-x)       _    (V2-x) 

IP/P-PI-IP0) = 0 

(A2) 

(A3) 

where h is specific enthalpy and S is specific entropy. 
The first equations (Al) are "conservation laws". 

Note that the momentum equation (which must include 
the reaction of the area AB with normal unit vector 

M) in (Al) is replaced by the equation of 
conservation of entropy. It prevents the entropy rise at 
the leading edges. (The momentum equation also takes 
place here with some reaction of area AB). 

The second equations (A2) are relations through 
the wave which propagates to the left of the boundary.(It 
is supposed here that gas flows from the left to right and 

the "axial" velocity component       is subsonic, 

which usually takes place. If gas flows in the opposite 
direction then the surface is considered as the trailing 
edge boundary, see below). For simplicity these relations 
are written in linear (acoustic) form, in real algorithms 
it is necessary to use exact formulae for either shock or 
expansion wave running to the left. 

The equation (A3) is the relation across the waves 
running to the right. 

V2 

If the relations —\ < 1 
a] 

ta-sr 
2        2 

CR -c^ 
< 1 are valid 

then the solving of equations system (A1)-(A3)  has no 
difficulties.  Indeed,  expressing the parameters with 

index "R"    from (Al), (A2) through pL  (and also 
through given parameters with subscript "2") one may 

prove that PR-\Pa)  is increasing 

function of   pL.    Therefore one may, for example, 
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decrease    pL    beginning from some greatest value 

(which is equal p2+(pa) --^■*n see (A2)) 

until  (A3)  is  true.   But  it  may  occur  during  the 

decreasing   of   pL   that   one   of   the   inequalities 

V2 (VR'lf 
~ < 1, —7,—— < 1 will be broken. 
a 2       2 aR -c^ 

fo ■ '*) 

1 + - 
\-k2 

(X-NJ 

&■*) 

(x-N) 
(V2-N) (A5) 

vl v 
Let the relation —|- < 1 is broken. Then the system 

aL 

(Al) is replaced by system: 

hL + 
2    ci 

+ -\VL-N\ =hR + - 
(vAf 

2    ci 

M  i  ti where  the   parameters   with   superscript       are 
connected with ones without the superscript with the 
shock wave relations. (This is the case of "detached" 
shock waves). 

Another case, when the inequality — — 
a\-c\ 

< 1 is 

This value of the pressure   pL   being found using 
(Al),   (A2),  (A4)    (or (A5)  instead of (A4))  will be 

marked by   pL. (In this case also pR = pL , etc.) 

It is the equation giving the largest value of pL 

which   is   chosen   from   the   alternative   equations 

-\2 

(VI) 
= ac and (A4)        (and    so 

— \2 

pL =max[pL,pL j togeth ier with: 
to-a 
a2  c2 
UR    c^ 

>1). 

Consider now what happens if the wave propagating 
to the left (and corresponding to relations (A 2)) stops 
and begins to run to right. 

If it is a shock wave then one may choose the 
parameters with index "L" being equal to the 
parameters with subscript "2". At the case of expansion 
wave according the left wave front speed the parameters 
with index "L " either are equal to parameters with 
index "2"   or are bound with them by expansion wave broken, is more difficult. In this case the equation (A3) 

must be thrown out and it is necessary to replace it by 
mother   J    There are two alternative equations. The first 

corresponds to the choked regime, when   pL = pL   is        relations under the condition: (VL-x) 
aL. The third 

found from the relation : 
fe-ir 

= aD. 

Another relation denotes that mass flow rates from 
the left and from the right are equal (that is, the right 

and left "areas" are equal). Let k = c\ j\x ■ X)  ("left 

blockage factor"). Then this relation may be written: 

{VL-xf=(vL-l)\(VL-Nf-cl      (A4) 

Using (A 2) one may transform it to the equation: 

equation of (Al) is thrown out. To these two equations 

one may add (A3) while 
fc-0 

<ac If the last 

condition is broken, then two alternative equations may 
be considered instead of   (A3) (similar to the case: 

(VL-x)      [v*-i) 
<aL): aR and    pL = pR.   The 
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condition that gives the largest value of pR is chosen 

(while: 
(vl) 

> aR ). In any case the equations are 

easy solved relatively the unknown 

If gas begins to flow backward then leading edge 
boundary is considered as .J trailing edge one. The 
conditions describing this case are the next. 

Let 

p" = p2+(pa) 
(V2x) 

P" = p2+pjT(P"-P2), 

V" = V, 
(V2-x) 

2       c2 
x 

■x. 

p =p-[po) = 

and p" be obtained from equations: 

l-(v"Y 
s{p",T") = s(p"\T-), 

h{T")+\(V")2=h(T'"\ 

where    T" = 
p"R 

(by other words,    p"* is total 

pressure corresponding to p",p",V"). Then at the 
"leading edge" gas 

c begins     to     flow 
backward    if   and 

only if p'> p"* . 
Let us now 

consider the trailing 
edge boundary. 
Similar to leading 
edge case one may 
define "trailing edge 
triangle"    (fig.2A). 

Let   £   be  a  unit 
vector which lies on Fig. 2A 

the plane of the vectors   x,t„N   (they are similar to 
ones   in  the   leading  edge   case)   and   satisfies   the 

condition: [X -1) • £ = 0 . 

Let its direction be the same as on fig. 2A. It is 
convenient further  to  consider  all  vectors  in  the 

i - 
coordinate system with basis —, N . (One may exclude 

the    X  - direction from the consideration similar to 
leading edge case). 

Let: 

(v-i) 
[V-N) = r, 

(M) 
a>0 

(we have chosen such direction of £), 

(/•/V) = ß, - = Y, 

yß 
k = 1 . The value   k    may be defined as "left 

a 
blockage factor". The parameters at the right side of the 
boundary surface will be denoted further without the 
index "R". 

Let us consider first the case when uL < oL  ("left" 

flow is subsonic) and    \U2 +v2) <a2 ("right" flow 

without the component [V ■ x)x is also subsonic). 

Then the relations at the boundary surface used at 
the present work are the next: 

p{ku + yv) = pLuL 

s = s, 

h + -(u2+v2) = hL+-u2
L 

p{ku + yv){au + ß v) + ap = \pLu
2

L + pL )a 

(A6) 
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pL-p2+{pa){uL-U2) = 0 

PL-p2-(ä%L-p2) = 0      (A7) 

(ku + yv) 

(A8) 

= Pi- 
(p*) 

>2+y2 
(A-W, +yv,) 

The first, second and fourth equations of (A6) are 
mass, energy and momentum conservation laws. (The 

momentum equation for the direction orthogonal to £ 
is not included to (A6) because it serves only for the 
defining of reaction of the area AB. This force is 
supposed here to be orthogonal to AB). They are 
unsufficient for the trailing edge case. So the equation of 
entropy conservation is added. Note that the number of 
equations (A6) is more than similar one of (Al). It is 
because the number of running away characteristics is 
more than it takes place for the leading edge. 

Two first equations of (A7) are relations for the 
wave propagating to the left, and (A8) is the relation for 
the wave running to right. They are written in acoustic 
form, but the precise form of these equations were used 
in algorithms. There are not any difficulties in using 
these nonlinear equations because the system (A6), 
(A7), (A8) is solved by iterations. 

Finally, as recalled in (A7),   VL = v2 =0. 
Some notes about solving of the system (A6), (A7), 

(A8). For this the solving of (A6) is key task. Let us 
consider a function 

f(p) = p(ku + yv)(au + ß v)ap, 

where p,U,v are expressed by p and parameters with 
index "L" using first three equations of (A6). 

Then one may obtain the formula: 

df    {$u-av)(k2+y2) 

dp yu - k v 

uk + yv 

ajk2+y2 

where a 
UPJ. 

is sound speed (with omitted 

within the angle being formed by vectors 2, and £ 
then f   is monotone function of  p. Considering the 

extreme cases, when V is collinear to £, or to £ , one 
may show that in one case    f     is no    more than 

\PL
U

L 
+ PL )a and at another f is no less than this 

value. And so the system (A6) always has the only 
solution relative parameters with subscript "L" ( when 

U2 +v2 <a2). 
Further one may reason similar to leading edge 

case. Supposing the value of pL to be known one may 
find other parameters with subscript "L" , then solve 
the system (A 6) and at last prove the condition (A 8). 

So pL may be decreased beginning from some largest 
value until (A8) is satisfied. 

But during the decreasing of    pL     one of the 

relations:    UL<aL    or    U2 +v2 <a2      maybe 
broken. 

At the first case the wave running to the left 
(precisely speaking its left front) and corresponding to 
relations (A 7) has zero speed. 

It is either shock wave or expansion wave. 
If   it   is   shock   wave   then   other   relations: 

pL=p2,UL =U2,pL= p2 take place instead of 
(A7) and one of the equations (A 6) must be excluded. 

The second equation  s = SL   is excluded if under this 

condition the inequality   s> sL   is true, otherwise the 
fourth   relation   must   be   eliminated   (this   is   the 
requirements of the second law of thermodynamics). 

If the   corresponding wave is an expansion wave 

then one must differ two cases. If U2 < a2 then the 
parameters with subscripts "L"  and  "2"  are bound by 

expansion wave relations under the condition:^ = aL. 

And if U2 > a2 then the values of parameters with 
subscripts "L" and "2" are equal. In the both cases the 
fourth equation of (A6) is thrown out. 

So   the   case   is   considered,   when   during   the 

decreasing of pL the relation uL 

Let  now the  condition 

: aL is broken. 

u2 + v2 <a2 
is 

index "R"). It is evident from (A 9) that if vector V lies 

first 

broken. And so the relation     U   + v   = a is 
fulfilled. This is the case when the flow is choked 
"behind the throat". Starting from this moment the 
values of the parameters with index "L" are constant 

and correspond to condition: U +v = a . And the 
fourth equation of (A6) is excluded in this case. 

Thus all cases are considered. (The conditions of 
appearing of opposite directed flows are similar to the 
conditions at the leading edges. In this case the "trailing 
edge" boundary must be considered as "leading edge " 
one). 
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If the fourth equation of (A6) is excluded then the 
solving of system (A6) and (A8) do not meet any 
difficulties. 

Let us consider the system (A8) and (A6) with 
excluded second equation of (A6). For simplicity the 
case of perfect gas with constant specific heats in a ratio 

Cp jcv = K will be supposed. (In common case the 

obtained below formulae will be used in some additional 
iteration process using the relation: 

Sh = cDbT 
" K-l 

K s£) 

Let:   ü = QLU + $V,V = $u-av.   The   system 
may be led to quadratic equation relative the   v . The 
final formulae are: 

V*2+y2 

(=J\    (pyL +pL-p]) + {ku] +yv}) 

+ -ct 
2 

Jk2 +Y2 /      , \   , . 
/==\   \PL"L + PL ~ P. j + \ku, + yv,) 

2     2 
PLUL 

K    Pi      1 
A 

+ -U7 f* 
K-lPi    2 

Having calculated / , one may find p: 

2+y2  ,   a2 ^ 

v = 
2C 

-ß 1 + Jl 
4AC 

B2 

v 

where 

(Aß-ya) 
P - r  =;V + 

J/f2+y2 .  a2 

-T=— + - 
(pa)       pLuL 

V>r2+Y2 ,  a2 
 i   +- W) PLUL K -1        pLUL (pH) 

+ 
la2(Aß-ya)2 

2       p2</2 

ß = -i-a2(Aß-ya)- 
K- 1 

[ptwi
1+pt-p1] + (/ri/1+yv1) 

+ K   V^+Y2 (*ß-Y<*) 
K -1    (pa)       pLuL 

VÄ2TyT 

TPI 

ttPi             2 o, +——+ a ^ - 
Pi"i 

{ku,+yv,) 

V*2+y2  (   a
2 

(p^)        PL"L 

then 6/: 

0 = auL+-^—{pL-p), 
PLUL 

and, at last, p,U,v. 

a2{pL+pLu
2

L) 

PL"L 
-(/ff/.+y/,) 

PL", LUL 

aü + (kß-ya.)v' 

u = QLü + $V,V = $ü -av. 

K     a 

K - 1 pLUL 

V*  +Y «U+PA)   /. v 
(pa) ptwt 

As described here and used in calculation 
procedures at the "internal" boundaries have the 
property that "subsonic" and "supersonic" cases are 
corresponded one to another. It denotes that at the 
continuous charging of values of parameters "1" and "2" 
fluxes at the boundaries also vary continuously 
(including the case when a shock wave comes to the 
boundary). 



4-18 

Note that instead of the fourth equation of (A6) any 
other model maybe used. For example, if flow deviation 
angles are known (as some semi-empirical functions of 
other parameters), one may use them in (A6). The 
general scheme of reasoning will be almost the same, 
only same formulae will vary (and even become more 
simple). 

APPENDIX B 

The averaging of 3D flow parameters at the middle 
of axial gaps with conservation of mass, momentum 

and energy fluxes 

As it was mentioned during the 3D gas flows 
calculations in multistage turbomachines the averaging 
of parameters in angular direction at the middle of axial 
gaps was fulfilled. On the one hand this guarantees the 
existence of steady solutions, on the other hand it allows 
to consider only one blade-to-blade channel for each 
blade row. 

The surface which is used for averaging will be 
called "surface of averaging". It is the right boundary 

£, = const   of "left" blade row and the left boundary 

£, = const for the "right" one. The computational 
grids used in the present work have the property that the 

"grid surface" T| = const are rotation surface located 
between hub and shroud. 

On the surface of averaging:^ = 0 . Let: 

\{?uk)Lc%d^>= j(puk)Rc^d<p 
0 o 
2* 2n 

\{pu2
k+p)Lcid<p= J(p^+p)ÄC6flrq) 

o o 

j(pukul)Lcid<p= j{pukut)Rcid(p (Bl) 
0 o 

2)1 2n 

j(pukw)Lckd<p= j(pukw)Rc^d<p 

puk\h + ^(u2
k+uf+w2) £fd(p = A 

where: 

puAh + ^(u2
k+u?+w2) ctdq> 

Let us define (for each radius) some "equivalent" 
axisymmetrical flow with parameters R,U,V,W,P 
which realize the averaging procedure. The "average" 
influence of right domain to left one and inversely is 
performed through this flow. 

"Large" values of parameters (with subscripts "L" 
and "R") are found from the exact solution of Riemann 
problem (this procedure is used separately for each cell): 

J      J 

It is sufficient to consider the case, when the grid 

surfaces r| = const are continuous at the surface of 
averaging. 

Let the parameters with index "1" be right hand 
limits and with "2" the left ones. They are calculated 
using piece-wise parabolic distributions of characteristic 
variables. 

"Large" values of parameters which are used to 
form the fluxes at all boundaries will be marked by 
subscripts "L" and "R" (respectively for left and right 
side parameters). 

The averaging of parameters fulfilled under the 
requirement that for any ring part of the surface placed 
from /"to r + br mass, momentum and energy fluxes 
are equal for both sides of surface of averaging. This 
condition can be written in the next form (for each r ): 

U„ = Ur 

r 

pL-p2+{pa) {ukL-uk2) = 0 

PL-PJ-W) (Pi-P2) = 0 

pL-P-{pa)"(ukL-Uk) = 0 

U,R = Ut 

wR=W 

pR-P + {pa)'\ukR-Uk) = Q 

pR-P-(a>)"{pR-R) = 0 

PR-Px-M'V{ul(r-Ukl) = 0 

(B2) 

(B3) 
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It is supposed in (B2) and (B3), that gas flows 
from the left to right and the flow is "axially" subsonic 
which usually takes place. (If this condition is broken 
for some cells then one must replace these equations by 
corresponding others in accordance with Riemann 
problem solution). As earlier these equations are written 
in linear (acoustic) form for simplicity. Really the exact 
equations were used for shocks and expansion waves. 

There are five unknowns R,Ut,Uk,W,P in 
equations system (Bl)   (with account of (B2), (B3)). 

Two of them Ut and W are found immediately, and 
the Newton method is used for solving of other 3 
equations. 

Some notes on the averaging procedure used. 
If the flow for both sides of the surface is 

axisymmetric then as it is easy to see the parameters 

R,U,V,W,P are usual "large" ones, which are used 
in forming of fluxes. That is: 

pL=pR=R,uL = uR = U 

etc. In other words in this case the averaging procedure 
is trivial. 

If the flow is "axially" supersonic then instead of 
(B2) the equations will take place: 

PL U2,vL=v2,wL=w2,pL=p2 

and instead of (B3): 

P/? = R>UR = U,VR = V,wR=W,pR=P 

Then it is evident from (B 1) that the flow with 

parameters R,U,V,W,P is obtained from the flow 
with parameters with subscript "2" by averaging in 
angular direction with conservation of mass, 
momentum and energy. 

Finally, if flows for both sides of the surface are 
slightly perturbed uniform axisymmetric flows then one 
may consider a linear problem with "freezed" 
coefficients        replacing        the        flux        vector 

F(Ü) = A(Ü)U by A(U0)Ü , where 

U0 = const      is   ' uniform     axisymmetric     flow 

,_v   dF(U) 
(A[U j = =—    is   Jacobi   matrix).    Reasoning 

similar to supersonic case and considering "plane 
waves" it is easy to find that considered averaging 
conditions are "non reflecting" ones and "Riemann 
invariants" are averaged in angular direction. 

These notes show that used averaging procedure is 
quite "natural". 

Note that this procedure allows also easy construct 
"mixed" models of flows in multistage turbines and 
compressors, when in some blade rows the flow is 

calculated by S2  - approach and in others by 3D 

method. Such method of calculation may be useful, for 
example, during the design of some separate blade row 
or stage when the influence of other stages can be 
accounted by more simple and less expensive way. It is 
evident that for this "mixed" model the averaging 
procedure remains the same as for fully 3D case. This 
model may be useful also for some unsteady 
simulations. 

In conclusion note also that the procedures 
described at appendixes A and B show the 
convenience of using of numerical schemes based on 
Godunov's scheme, with use the exact solution of the 
Riemann problem. 
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Fig. 1. Meridional plane of the computational flow passage of bypass gas turbine engine. 
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Fig. 2. Calculation of inviscid flow through the turbine cascade at Si -surface (dotted line is a result of solving 
of full potential equation [14]). 
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Fig. 3. Unsteady Stator and rotor interaction at Sj-surface (inviscid calculation ). 
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Fig. 5. Computational grid (at meridional plane) for cooled 1 stage high pressure turbine. 
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Fig. 7. Exit absolute velocity angle distribution for high pressure turbine. 
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Fig. 8a. 3D computational grid for fan with blade mid-span shroud and low pressure compressor (meridional 
section). 

Fig. 8b. Computational grid for the fan with blade mid-span shroud and low pressure compressor (hub 
section). 
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Fig. 9. Pressure contours at some meridional section. 

Fig. 10.        Pressure control at hub section. 



4-26 

^ 

; 

Fig. 11. Pressure contours at tip section. 
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Fig. 13. Computational grid for S2 - surface calculations. 

Fig. 14. Pressure contours. 
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Fig. 15. Stream lines. 

Fig. 16. Computational grid for the bypass engine core. 

Fig. 17. Pressure conours for bypass engine core in meridional section. 
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Simulation of multidisciplinary problems for the thermostress state of cooled 
high temperature turbines 

by 
Dr. V. K. Kostege, V. A. Halturin, Dr. V. G. Sundurin 

CIAM (Central Institute of Aviation Motors) 
2, Aviamotornaya St., 

Moscow, Russia, 111250 

Abstract 

Numerical models for the thermostress state analysis 
of turbine rotor elements are discussed. Steady and 
unsteady temperature fields are calculated and result in 
solution of conjugate heat and hydraulic problems for 
blades (quasi three-dimensional model) for disk (two- 
dimensional model) and for the whole cooled rotor (three- 
dimensional model). A lot of attention is given to mass 
flow calculation in blade passages and turbine 
circumferential disk cavities. They are determined by 
using experimental data for pressure loss and generalized 
dependencies for friction and heat transfer coefficients on 
Stators and rotors surfaces. 

On external blade surfaces the boundary conditions 
are defined from the solution of two-dimensional and 
three-dimensional gas dynamics problems and corrected 
from experimental data base for film cooling. The 
thermostress state is calculated by a finite element method 
for realistic geometry using common equations of 
elasticity theory. 

pV 

Nomenclature 

c heat capacity 
k thermal conductivity 
T temperature 
W heat source 
h heat transfer coefficient 
N shape function 
t time 
x,y,z - coordinates 
P pressure 
V velocity 

S           - pressure loss coefficient 

D hydraulic diameter 
1 passage length 
G mass flow 
F passage cross - sectional area 
S surface 
% Laval number 

n(X)=P/Pt 

q\W- 
P< V r   cr 

gasuynair 

ett,) = P/PT 
R - gas constant 
X friction tension 

Subscripts 

a - ambient 
w - wall 
con - contact 
m - time moment 
e - finite element 
w - rotation 
t - total 
d - disk 

<P circular 

Introduction 

Complex solution of gas dynamics, heat transfer and 
stress conjugated problems is an important trend in the 
development and application of mathematics simulation in 
the analysis of a modern high temperature turbine. An 
example is the problem of an aviation engine, cooled, high 
temperature turbine rotor thermostress state, for which the 
accurate solution is provided by simultaneous calculation 
of air and gas mass flow in inter disk cavities, in blade 
cooling passages, and in the gas channel. 

General purpose non - linear finite element codes, 
such as MAPS, ABACUS etc. are used as a solution of 
plasticity theory stress and for temperature field 
calculation with boundary conditions. 

A method for the calculation of a cooling air mass 
flow distribution in an internal channel of a turbine blade 
by a multipass configuration was presented by Jen and 
Sobanic [1], Kumar et. al. [2]. Both methods are based on 
published correlations describing the heat transfer and the 
pressure loss. In this work, no special attention is given to 
temperature definition in the blade metal. A method of 
temperature field calculation for steady and unsteady 
conditions with three - dimensional and two - dimensional 
models, through several sections of the blade is given by 

Paper presented at an AGARD Lecture Series on 
"Mathematical Models of Gas Turbine Engines and their Components", December 1994. 
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Gastebois and Lagrange [3]. Three-dimensional blade 
temperature distribution and internal boundary conditions 
are calculated using an iterative coupled procedure given 
by Tietz and Koschel [4]. In this work, questions of 
temperature calculation for blade with a film cooling 
system are not discussed. 

Taking into account possible errors in the statement of 
three-dimensional boundary conditions an analysis rule is 
realized at the conclusion. 

Lower level models are used at first. For heat state 
calculation, an applicable interactive system of simulation 
of two-dimensional and three-dimensional problems by 
finite elements method, is given which includes: 

• modules of automated generation finite element grids 
in a two-dimensional and a three-dimensional 
compound region with minimum initial data. 

• modules of calculation of one-dimensional flow and 
heat exchange in blade passages and in 
circumferential disc cavities using experimental data. 

• modules   of  calculation   of  steady   and   unsteady 
nonlinear two-dimensional and three-dimensional 
equations of heat conduction by finite element 
methods with boundary conditions of second and third 
kind, with boundary conditions of contact heat 
transfer, and also with periodicity conditions. 

• modules of graphic  treatment of initial  data and 
calculation results (two-dimensional and three- 
dimensional graphics). 

In this lecture, heat transfer and hydraulic models are 
discussed for the profile part of blade, for disk and for 
rotor (which includes blade, hooks and disk). Also the 
practical application of results of mathematics simulation 
methods to analyze heat and stress processes in aviation 
engine elements is demonstrated. 

1. Simulation of turbine element temperature state 

Equations of heat conduction (1.1) with boundary 
conditions of the second and third kind (1.2) and with 
contact heat transfer conditions (1.3) are integrated. 

dT 
cp — = V(£Vr)+w=0     (1.1) 

dn 

-k^ = ha{Tw-Ta) + q      (1.2) 

k 
dn 

f 

A 

h dn 
= rlconV2w ~T\W) 

(1.3) 

These equations describe unsteady temperature fields 
in a three-dimensional body with inside heat sources. On 
body surfaces they can be simultaneous, taking the place 
of convection heat flow, (determined by heat transfer 
coefficient and ambient temperature) and radiation heat 
flow (1.2). In compound constructions, such as a frame 
and turbine rotor, the common boundary temperature 
fields is wrecking break, the size of which depends on 
contact heat transfer. Boundary conditions on such 
surfaces are written down as (1.3). 

Intergration of equation (1.1) with boundary 
conditions (1.2) and (1.3) is implemented by a finite 
element method. As a result we have a system of linear 
algebraic equations (1.4) with relatively unknown 
temperature values of a finite elements grid node. 

where 

^[/>]+[#]+[ß]W+i= 

;[/,]-[Är]-[ß]W + 2{ö1} 

(l.4) 

K 4 ZNJM JNJKJK W 
dx    dx       dy    dy       dz    dz 

*»=£/»*,    Pz=-Jc9Nxdv 
e V 

e s: 

ß, = SJ hconNxNjds 

Ql = X J (haTa + q)Nrds + X J NxWdv 
e si e v 

T = [N]{T} 

rfo, 

or 
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In computer programs for the two-dimensional case 
linear triangulation is used and for the three-dimensional 
case, a 4 - node tetrahedral and 6-node prism are used. 
Calculation of matrix elements [^»[^»[Q] are 
implemented analytically for triangles and tetrahedrals. 

For prisms the integration is implemented in a local 
system of coordinates using Gauss's quadrature. 

Solution of a system of algebraic equations (1.4) is 
implemented by successive upper relaxation method. 

To provide a unique solution, heat capacity diagonally 
matrices[P] are used. 

2. Finite elements grid generation 

2.1. Two-dimensional grid. 

Two-dimensional arbitrary shape construction is 
automatically discretized by trianglar elements. 
Construction can include some details (calculated under 
regions) each of which can be multiple connected. A 
minimum number of nodes is needed for describing the 
construction boundaries, line segments between which 
describe sufficient exact contours of each subregion. If 
subregions unite in one group, then each subregion can 
have its own heat transfer properties, but on common 
boundaries, the temperature field is continuous. Between 
subregions which belong to different groups, we shall fix 
contact surfaces. An unstructured grid is generated in 
each subregion (Delaunay triangulation). 

Printed data is array numbers which have information 
about the finite element grid and includes: numbers of 
node couples which are at the beginning and end of the 
boundary segments calculation region, numbers of nodes 
forming contact segments, grid node coordinates, inter 
node ties and addresses of inter -node ties. 

One-dimensional arrays of inter node ties for each 
node (for example X ) includes: node numbers connected 
with X - node in order of node round-about way against 
pointer. 

Addresses of X - node ties in an array of inter-node 
ties are defined by array addresses, which includes ties 
beginning addresses of each node. In the ties array for 
each node enumerated connected with other nodes, the 
number of each is larger, than theX - node number. This 
avoids a double description of each tie and uses thematic 
symmetry in equation system (1.4). The way just described 
demands a minimum volume of active computer memory. 
Also, the array of triangles and their sub region order 
numbers is embedded information. This information is 
used to define appropriate heat physical properties of the 
material while calculating matrice elements in equation 
(1.4). 

2.2 . Three-dimensional finite elements grid. 

A three-dimensional grid is generated based on six- 
node prisms and tetrahedrons. Prisms are used for grids 
generation in compound regions, which have a cylindrical 
structure. Prisms are situated in layer wise direction 
coinciding with cylindricity axis of a three-dimensional 
object. An example of objects with piece-cylindrical 
structure can be a turbine disk (cylindricity in circle 
direction),or a lock of blade (lock axis is cylinder axis). 

The basis for generating a spatial prism grid is a two- 
dimensional plane template (body projection on plane, 
which is perpendicular to the chosen cylindricity axis), 
which is broken into triangles. In body projection should 
be contained all geometry peculiarities, which are 
distinguished as sub regions. 

The simplest variant of generating a three- 
dimensional prism grid is by making a template step 
moving along the chosen direction - cylindricity axis. 

Key information for grid generating is a layer filling 
array. Each sub region of the template in each layer can be 
the volume element basis. If the sub region is empty (in 
this layer the sub region presents a cavity) an appropriate 
array cell includes zero. Also in the sub region some 
details is define. Consider that between elements, there 
are contact surfaces with thermal resistance. Between sub 
regions of one element contact is ideal. This information 
allows the formulation of a list of node numbers for 
compound finite elements (prisms). 

To define the real node coordinate of each layer, a 
row procedure is used. Templet accommodation as the 
whole thing on the chosen cylindricity axis, complete in 
space at first. In consequence we have a regular structure 
in the axis direction for which each layer is plane. For 
grid generation for example in disks, the templet is 
situated as a fan from section to section around the given 
disk axis. Also for grid generation in such regions as a 
profile part of blade, reflection of the whole templet or 
only its part on a piece-linear spatial surface is used. 

Also there can be the possibility of a templet crook. 
To local two-dimensional templet node coordinates, a 
third coordinate is added, creating a local three- 
dimensional cartesian coordinates system. This crooked 
templet can move by steps along cylindricity axis creating 
nonplaner sections. For example, for a grid generation in 
the region of a perforated blade leading edge, the plane 
profile part of a blade section is a templet. Templet 
crookedness happens in the case of holes inclined to a 
section plane. 

After calculation of all global node coordinates, grid 
smoothing is realized, it means the node situation changes 
without the calculation region external shape changing , 
improving grid quality. 
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Simultaneously with a volumetric finite element 
grid, on the templet base spatial hydraulic net of cooling 
system with bond to triangle or four -cornered surface grid 
elements is generated. Also, geometric characteristics of 
net branches are calculated. In this way liaison between 
the three-dimensional finite element and hydraulic models 
is provided, needed for solution of conjugated heat 
conduction analysis. 

Pressure characterization in hydraulic net nodes 

\Pt | is defined from the solution of a linear system of 
algebraic equations, received from the mass flow balance 

equation for inside nodes by using previous [P,} : 

2X=o (3.1.3) 

3. Calculation of air mass flow and parameters in the 
turbine cooling system. 

Calculation of cooling air mass flow through blade 
cooling system passages is implemented by using 
hydraulic type resistances. 

Air mass flow in the turbine air cooling system 
channels, and mass flow velocity components, pressure 
and air temperature in circumferential disk cavities are 
defined from calculation of one-dimensional flow on 
branches of the generated hydraulic model. 

(m-branches index , which have common node). 
For compressible flow equation (1.3.1), it is written 

down inform (3.1.4): 

p -P. + AP = 
u tj at 

03964Pljq(X)F 

7T~ 
>? 

(3.1.4) 

P;="^ea); 
RT, 

3.1 Calculation of the hydraulic net, simulating the 
blade cooling system. 

Cooling air mass flow in blade passages is simulated 
by the flow in hydraulic net branches. It signifies in an 
appropriate model of united hydraulic resistances. Net 
generation is realized using blade geometry, given in a 
simpler way with the help of layered rows by height. On 
each layer is an appropriate plane blade section. Net 
branches simulate hydraulic resistance of a particular part 
of the blade. To each appropriate T branch appoint area F 
and hydraulic resistance ^ . Drop of the total pressure on 
branches m for incompessible flow between node! and j is 
written down in :(3.1.1) 

P   - P +AP =£ — 

In order to make the equation (3.1.1) linear, we write 
down an expression for mass flow in (3.1.2) 

/Gv 
(3.1.1) 

V J 

G = 
£>/Go 

(/^+1-P/+1-APJ (3.1.2) 

where h,f 2 ' IF 

G0=- 
|(ff-J?-A/>.)p,. 

Air temperature at inside nodes is defined by equation 
(3.1.5) by taking into account flows turbulence, air 
heating as a result of heat exchange with the blade and 
from centrifugal forces acting. 

k    XKff+ATj + ATjGoC^ 
rpK     

2(cod 
(3.1.5) 

here m-indexes branches, which have a common j node. 
Air heating on branches from heat exchange with the 

blade is defined as : 

hS 
AT;=- 

rw-(r;+r/)a5] 
cpG0 

Air pressure variation and air heating in a branch 
from centrifugal forces acting is defined from dependence 
on rotation frequency and hydraulic net node radii. 

Hydraulic resistance to air mass flow in cooling 
passages defines flow capacity of each passage and also 
for the whole cooling system. Total pressure losses 
coefficient £ • on each branch is presented as the sum 

£ • =tn +£,,, where ^T - friction losses on the branch, 

and ^; - local losses, for example passage entrance losses 
or passage exit losses. 

Friction losses are defined using friction coefficients 
\ by correlation 
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«.-Vö 
To define friction coefficient in smooth passages 

(taking into account wall roughness) and in rib passages 
well-known experimental data from many authors are 
used. Friction losses coefficients for sudden section 
narrowing or broading depend on correlation of narrow 
and wide section areas and entrance (and exit) flow 
conditions. A lot of experimental data for local losses are 
in reference books on hydraulic resistance. 

3.2. Calculation of air parameters in the turbine rotor 
cooling system. 

For the calculation of heat exchange boundary 
conditions of disk surfaces it is very important to have air 
parameter distribution in turbine circumferential disk 
cavities. It can be approximately defined from the solution 
of a system of one-dimensional differential equations by 
giving average parameters at entrance and exit of 
circumferencial disk cavity. By this, tangent friction stress 
values on revolving and immovable surfaces are 
calculated using criterial equations. 

Changing flow parameters by radius in the clearance 
between revolving disks or between disk and immovable 
wall can be defined by numerical solution of equation 
system. (3.2.1) 

G—(rV<p) = 2nr2iT ; 
dr 

r dr 

d_ 
dr 

V2 

.-2- 
r 

\ 

p dr     p 8/ 

K Mr T + -£- +—'- 
/   dL 

• + 
hjr 

cpGdr    cpG fa-*;) + 

fc-rj (3.2.1) 

dr 
{pFrVr) = 0; 

RT 

where T £  = kF{l x + kF2x 2 -for flow between the disk 

and immovable wall. 
X j  = 2kF{t j - for flow between two disks. 

X jand X 2 -tangent friction tensions on the disk and wall, 

calculated by relations: 

0535    (Vy-Vd) , 
2 

x, =■ 
Re 0.2 

rei 

Rere, - 
(v,-VD)r 

T,= 
0535    V^ 
Re02 P  2 

-,Re = 
Kr 

(X j is positive for a centrifugal flow. In other cases X, is 

negative); kF1[kF2) -correlation of real disk (wall) 

surfaces to annular surface on integrated part. 

dL = 2nrTfür—dr   -operating   ,   which   made   by 
G 

revolving disk 

(V, ~VD < O) -or twirling flow (^ -VD > o) ; 

X, = 2x j -while flow in clearance between two disks; 
X j = 1 -while flow in clearance between disk and wall. 

Substitution in the equation system integrated variable 
R to Z, and equation of momentum conservation in radial 
direction to momentum conservation equation in axis 
direction leads to: 

d(Vz
2p) dP 

27tr5    V      =2jcrc   -2jrr5 — 
dz dz 

which describes one-dimensional swirling flow in an 
annular clearance of constant width 8 (8 « r) between 
disk and shaft or between disk and stator. 

Because parameters of entrance in some 
circumferential disk cavities depend on flow history, then 
parameter calculation in circumferential disk cavities of 
type (8) needs common solution of equations systems. 

In common cases the hydraulic air admission system 
model consists of branches which look similar in order of 
parts with appointed flow type (such as flow between 
revolving disk and wall; in the annular clearance between 
disk and shaft; labyrinth between rotor and stator ; in the 
revolving radial passage ; in apparatus of preliminary 
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annular air introduction) with typical hydraulic resistance 
or with given mass flow characteristic. 

Calculation of such a hydraulic net is made by a 
successive approach method, in two stages on each 
approach. At the first stage equation system (3.2.2 ) is 
solved, analogous to (3.1.1) 

«W"«W+4P- 
i, 
tG°G» (3.2.2) 

If the equation is solved for a branch , simulating flow in 
circumferential disk cavities, then the pressure change on 
the branch is defined by quantity APCO (first items in 
(3.2.1) it is small because of the small speed mass flow 

component ). Relative to the quantity AP(d, there are 
successive approaches. If APCO is zero, from equation 
system solution (3.2.1) mass flow values Gxj are defined 

on hydraulic net branches with given average parameters 
in boundary nodes. Then for received values from 
equation system solution type (3.2.1) we have parameters 
at the end of the branch on the exit of this cavity ) also 
this turbulence at nodes is defined by the circumferential 
speed component and the temperature is according to: 

V. <pr 

here m -indexes branch nodes , which have common node 

X . For previous values \Gxj\, {P} and new values jV^ j, 

{T} equation systems (3.2.2) are solved. 
At the end of the stage APco is defined as 

AP=Ptj 
t 

P -—G2. 
"     p    " 

with received vector APco the first stage is implemented 
again. 

The calculation succession described continues until 
the establishment of vectors {P}. As a solution result we 
have average parameters in net nodes and parameters 
distribution in circumferential disk cavities. 

4. Simulation of temperature fields in a turbine 
element. 

4.1.Simulation of temperature fields in blades 
(quasi three-dimensional model). 

The calculation model of the profile part of the blade 
heat state includes a finite element and hydraulic model, 
boundary condition models and heat conduction model in 
the profile part of blade. 

For a chosen plane profile parts of blade sections with 
appropriate geometry, we generate two-dimensional finite 
element grids. The profile part of the blade section 
numbers is chosen in a way, that it will take into account 
peculiarities of the profile part of the blade cooling 
system. Separate finite element grids generated in each 
section and united in one whole grid is more expedient 
than generating one whole grid simultaneously in all 
sections. 

For mutual crossing excepting, it is very important for 
calculation results visualization to make section 
displacement relative to each other by one axis Y. 

The cooling system hydraulic model generated and 
branches bound to appropriate blade section contours is 
accompained by use of a graphic dialogue regime. 
Geometric branch characteristics are defined using point 
coordinates on section contours and some drawing data. 

Boundary condition models generated include 
requirement of criteria dependence for heat transfer 
coefficient calculation on different blade section parts. For 
blades with convective film cooling systems on the finite 
element grid generation stage cornering passage 
projections on a section are distinguished as sub regions. 

In the graphic dialogue regime, ties between 
perforations and the appropriate hydraulic net branch are 
established. For heat transfer coefficient calculation in 
passages needed in the editor regime, passage hydraulic 
diameter and passage step by height and passage 
inclination corner to section plane are also given. In 
perforated passages, local heat transfer coefficients and air 
heating are calculated. Received values are used in heat 
sources, which simulate heat exchange in perforated 
passages. Source intensity is defined as 

Wx=hxFz(Ta-Tw)/Vz=hWg{Ta-Tw) 

here Ta - air temperature in passage limits of X finite 

element.; Tw - middle temperature of X element ;V - 

volume of region with source ; Wg- source geometric 

characteristic (for cylindricity passage Wg =K IS,m~ , 

defined only by hole step.) 
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For film cooling characteristic calculations, which depend 
on cooler mass flow, hole step, blowing ratio, Mach's 
number  of basic   flow,   blade   curvature  is   used   in 
experimental dependence. 
(A.Trishkin, CIAM) 

}t (pv)/„ e«, = ifl-+aor7   G
s   I 'fc 1 + A 

where   Bfc = i h 
t-t„ 

K - coefficient, which taking into account flow blowing 
out corner to section plane. 

K=l t with a = 30° 

K= 0,63 with a = 90° (pressure side) 

K= 0,73 with a = 90° (suction side) 

(pv)     -   mass   flux   on   film   coverage   surface   till 

calculation point; 
A = 4,5 for suction side 
A = -7,1 for pressure side 
x - distance from blowing site 
R - middle surface curvature radius from blowing site. 

In case of multi row blowing while 6«. and film 

temperature tfc calculation take into account calculation 

results for holes, situated up stream, it means that instead 
of gas temperature at the blowing site we take the 
previously calculated value tfc. 

On the external blade surface, heat transfer coefficient 
is defined using two-dimensional boundary layer 
calculation programs and correlated coefficients, taking 
into account film injection. 

Calculation models that were described , are the basis 
of program complex Quasi 3D. Account of mutual 
influence of models is implemented by an iteration 
process. Some calculation results of turbine blade heat 
state with using this program complex are presented in 
Fig.4.1.1. Here are presented hydraulic and geometric 
models, external boundary conditions and temperature 
fields in a middle section and also the temperature 
distribution of blade's suction side. 

4.2 Simulation of temperature fields in disks (axis 
symmetric model). 

For disk heat state calculation, a solution to conjugate 
the heat transfer problem is needed. It means 
simultaneous  calculation  of heat exchange  and  heat 

conduction. For calculation time minimization (especially 
while calculating unsteady heat regimes) one-dimensional 
air mass flow calculation in circumferential disk cavities 
and by air admission system channels are put in a separate 
stage. 

Calculation model generation started with finite 
elements grid generation in meridional disk section and in 
stator details around them. Passages in the disk for air 
admission to the blade are distinguished in separate sub 
regions. With air blowing through clearance of roots this 
part of rotor can be in aspect a sub region row. In all these 
sub regions temperature field calculation heat sources of 
appropriate intensity are given. 

The next stage is the air admission system hydraulic 
model generation. On the air admission scheme are 
distinguished parts with assigned flow type or typical 
hydraulic resistance. Information preparation for 
hydraulic net calculation is made in the graphic dialogue 
regime. One of the net branches is the blade mass flow 
characteristic, which is calculated by using the turbine 
blade hydraulic calculation program. 

Calculation model generation is finished with tie 
establishment between the finite element grid and the 
hydraulic net. It means that appointed net branches show 
appropriate geometric model contour parts or sub region - 
heat sources. 

How and average parameter calculation in 
circumferential disk cavities are implemented for all 
regimes, which are given in the description of turbine 
work. Mass flow, pressure, temperature, flow swirl and 
also flow temperature change the branch because 
admission (or pipe - bond) to revolving disk work are used 
for heat transfer coefficients and flow temperature 
calculation. Some calculation results steady and unsteady 
state of a whole cooled turbine rotor are presented on Fig. 
4.2.1 

The hydraulic model includes labyrinth for the 
compressor, cavities between stator and rotor elements , 
and preliminary calculated air mass flow characteristic of 
a cooled blade. In each cavity one - dimensional swirling 
flow parameters are calculated. The finite element model 
includes an easier model of the blade root. 

4.3. Simulation of three -dimensional temperature 
fields in turbine rotor. 

Temperature field in the turbine rotor is defined by 
using a three - dimensional finite element model and 
boundary conditions on the profile part of the blade 
external surface and disk side surface, defining in QUASI 
- 3D and 2D heat hydraulic models. 

Inside flow and heat exchange passages are 
calculated as in a QUASI - 3D model for blade. On 
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platform surface, heat transfer is calculated by using 
experimental data and results of gas flow calculations. 

Some examples of calculated three - dimensional 
temperature fields are presented on Fig. 4.3.1 - 4.3.4. The 
heat state of the blade with the developed convection - 
film cooling system together with the disk was calculated, 
taking into account boundary conditions of contact and 
periodicity conditions, which allowed the calculation of 
temperature fields without distortion within the limits of 
one blade root. 

5. Simulation of stress - strain state turbine elements 

One of the most important trends in the development 
of aviation engines is the spreading adoption of the 
numerical study of the stress-strain state of engine 
components in the initial design process. It includes 
rigorous application of finite element methods, using high 
level models, including two-dimensional and three- 
dimensional SSS models. The application of these models 
in the initial stage allows detection of potentially 
dangerous stress concentration zones; and development of 
the details of constructive changes for reducing these 
stress-except in the study of crack origine. 

In practice the widest applications have SSS 
mathematics models which are based on numerical 
solutions with the help of finite elements methods, solve 
two-dimensional and flat and axisymmetric elasticity 
theory problems (especially for stress concentration 
zones). Also, as practice showed, in development and 
qualification of aviation engines in many cases, only 
three-dimensional calculation analyses allowed adequate 
descriptions of SSS details and only on this basis received 
reliable estimation of its lifetime in the development 
process. 

As examples, you can see some calculation results, 
which illustrate application effectiveness of three- 
dimensional mathematics models for SSS aviation engines 
detailed components analyses. As three-dimensional, we 
mean models, based on using common elasticity theory 
equations in three-dimensional form, and also common 
shell theory equations. 

We know that injection holes system geometric 
parameters influence stress level in the blade near from 
these holes, this should be taken into account while 
working out blade constructions with convection film 
cooling. 

In Fig.5.1 there are spatial SSS calculation results in 
the cooled blade suction side near injection hole inclines, 
which are inclined relative to the normal to the suction 
side surface in blade cross section. As you can see from 
calculated data in the picture, the blade suction side near 
the inclined hole has a large stress concentration, 
characterized   by   theoretical   concentration   coefficient 

a =5,4. This is much more than estimated results on 

two-dimensional calculation base. 
As you can see from the example, while designing 

effective convection film blade cooling systems, one 
should check strength conditions in stress concentration 
zones while taking into account spatial effects, because 
these strength conditions can place limits on choices of 
geometric parameters for convection - film cooling 
system. 

While working out cooled turbine blade constructions 
from heat strength, single crystal nickel - based alloys 
there appears the problem of choice of rational, spatial, 
crystallographic lattice single crystal orientation, which 
provides for blade maximum lifetime while giving 
exploitation conditions. 

The crystallographic lattice of single NI-base alloys is 
a cube, the mechanical characteristics of which are 
different in different directions. Because a blade 
constructed from such alloys is an anizothropic body, it is 
very important to use three-dimensional mathematical 
models for SSS calculations; taking into account the 
anizothropic elasticity and single crystal strength 
peculiarities. 

There are some results of single crystal turbine blade 
SSS calculation on steady engine operating regime. You 
can see in Fig.5.2 the profile part of blade temperature 
field on this regime. Calculation is implemented in a 
common three - dimensional construction for two types of 
single crystal crystallographic lattice orientation. 
Centrifugal force N is acting in the axial orientation 
:[001] (cube's rib is parallel to force N acting direction) 
and [111] (the main cube's diagonal is parallel to force N 
acting direction). 

Elasticity strains are defined on the basis of an 
orthotropic body three - dimensional elasticity theory , and 
plastic strains and creep strains on the basis of plastic and 
creep flow theories for an orthotropic body with izothropic 
hardening (Hill's theory). This task was solved with the 
help of FEM in three - dimensional construction. 

Calculation results from Fig.5.3 show that the 
examined blade is better when axial orientation of single 
crystal [001], is that by which blade stress is minimum. 
Maximum values of stresses occur for orientation [111]. 
The given effect is linked with elasticity modules (and it 
means thermal stress, proportional to elasticity module) of 
single crystal in direction [001] is as much as 1,5 times, 
lower than in direction [111]. 

Next stress reduction and blade's strength durability 
are cast with direction of crystallization [001] probably by 
way of rational selection of secondary azimuthel 
crystallographic lattice orientation while its rotation in the 
most dangerous plane blade section remains flat. 
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These examples show that for the right estimation of 
stress and strain distribution in highly loaded engines, 
correct details of grids and nodes are very important for 
implementation of three-dimensional mathematical SSS 
models. Only on the basis of such details in the initial 
stage of a design can be a reliable result, which allows 
correct estimation of component life. But in a large 
number of cases, acceptable results can be obtained by 
using simpler, two-dimensional mathematical SSS 
models. 
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Application of multicomponent models to flow passage simulation in 
multistage turbomachines and whole gas turbine engines 

by 
Dr. R. Z. Nigmatullin, 

CIAM (Central Institute of Aviation Motors) 
2, Aviamotornaya St., 

Moscow, Russia, 111250 

Abstract 

Some features of used numerical algorithms for gas 
turbine engines components flow simulation are 
considered. Among them are topology of computational 
grids in 2D and 3D cases for flow passages of complex 
geometry, details of realization of conservative scheme 

at joints of different grids. In S2-calculations it is 
necessary to consider the problem of inlet and outlet 
angles, in Euler calculation the ways of accounting for 
viscous loss effects are briefly described. Examples of 
calculations of flow through by-pass engine components 
are presented. 

Introduction 

Gas flow through the gas turbine engine flow 
passage is a very complex phenomenon. It is unsteady 
3D turbulent gas motion in a traveling domain of 
complex geometry. So various simplified models are 
used for its simulation. It leads to the necessity of using 
some empirical or semi-empirical data. 

For instance, while using Euler equations system for 
description of such flows it is necessary to simulate 
viscous loss effects. The simplest way is to use on 
experimental data. But even in case there is the problem 
of distribution of these losses within the blade-to-blade 
domain. Some loss components may be roughly 
estimated using simple models. Number of models of 
such type is considered, for example, in [1], [2]. 
Empirical formulae of various type, based on 
generalization of experimental investigation data , are 
widely used in design offices. This generalization can be 
fulfilled, for example, using the methods of regression 
analysis [3]. Losses may also be calculated by means of 
numerical solution of boundary layer equations or 
Navier-Stokes equations. 

If one uses 2D approaches (gas flows on S2 - 
surface) it is necessary to add to this empirical data the 
information about inlet and outlet flow angles. 

When these data together with gas dynamic and 
geometrical information are gathered (by other words, 
when the problem is formulated) it is necessary for gas 
flow calculation to discretize the computational domain. 
Because this computational domain in many cases has 

complex geometry it is convenient to use composite 
grids. The choice of grid configuration depend on the 
model used. In many cases it is necessary to consider 
special conditions at different grid joints. Gas flows in 
many modern gas turbine engine components are 
transonic and so it is desirable to require the 
conservation of mass, momentum and energy in this 
case. 

These problems are briefly considered in the present 
lecture. 

In conclusion examples of gas flow calculations in 
multistage turbines, compressors and whole by-pass 
engine are presented. A simple model of processes in 
combustion chamber used in simulation for whole 
engine is described. 

1. Computational grids used and some features of 
realization of numerical scheme at joints of different 

grids. 

Gas flow passages of gas turbine engine components 
may be of fairly complex geometry. As an example, let 
us consider gas flow through fan with low pressure 
compressor and by-pass duct (see figures 8-15 of 
lecture 4). This problem was considered both in 2D and 
3D formulation. It is convenient to use composite 
computational grids for calculation of gas flows through 
such channels. For instance, a composite grid for 2D 
problem (see fig. 13 of lecture 4) for the fan without 
blade mid-span shroud consist of three components 
generated by simple algebraic method. In addition to 
ensure the scheme to be conservative it is convenient to 
require that neighboring grids have a common 
boundary. Then it is sufficient to form the combined 
distribution of boundary nodes of different grids, to 
interpolate corresponding "left" and "right" limit 
values of parameters to middles of formed segments, 
then to call arbitrary discontinuity breakdown 
procedure (in accordance with the main order of 
calculations, described in the previous lectures) and to 
obtain each flux as the sum of fluxes of the "combined 
grid" at the boundary. It is obvious, that resulting 
scheme is conservative. This property of the scheme is 
very important for transonic flows calculations. 

The computational grids and algorithms of 
calculation for a 3D case are constructed almost in the 

Paper presented at an AGARD Lecture Series on 
"Mathematical Models of Gas Turbine Engines and their Components", December 1994. 
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same way. The grid geometry in meridional plane is 
similar to a 2D problem (see fig. 8a of lecture 4). In 
addition it is natural to require that the joints of 
neighboring component grids are parallel to the pitch of 
the cascades (for averaging of parameters in angular 
direction), see fig.8b of lecture 4. And a separate grid is 
generated for each vane or blade row. The inlet and 
outlet boundaries of these grids coincide with the 
averaging surfaces (see Appendix B of lecture 4) or with 
inlet or outlet boundaries of the total computational 
domain. Numerical calculation results show, that the 
method of calculation at the joints briefly described here 
allows to ensure the continuity of space distribution of 
parameters, guarantees that the scheme is conservative, 
which is important for transonic gas flows calculations 
when there may exist shock waves or other 
discontinuities in flow. 

2. Some features of numerical algorithms of gas flow 

calculations on S2 - surface. 

If one uses 2D approach based on consideration of 

gas flow on   S2- surface, it is necessary to have the 

spatial distributions of two functions:  (p = (p(^,T|), 

k = k(^,Ti)   (see lecture 4). The solution essentially 

depends on the choice of these functions. 
The simplest way is to specify as a stream surface 

Cp = cp(^,T|)   the mean   blade surface, formed from 

mean profile lines for some family of blade sections (for 
example,    plane    sections)    and    to    choose    for 

k = k(£,r|)   the geometrical blockage factor defined 

,       h)»ue~<Ppr 
as:   1 ,  where (psuc - value of angular 

coordinate, corresponding to suction side of blade, and 

(p    - one, related to pressure side,  t - angular pitch of 

2K 
cascade: t = ,   Nw - number of blades in cascade. 

N W 
But this way in many cases leads to unsatisfactory 

results. So one often modify these functions  (p(H,,T|), 

k(^,ri).   One may, for example, "correct"   functions 

(p,k in such way that resulting "triangles" at leading 
and trailing edge lines (see Appendix B of lecture 4) 
correspond (in some sense) to "real triangles" in blade- 
to-blade space. As a variant of this method (for gas 
turbines)     one  may consider  such modification of 

cp = cp(£,,Tj) (and, may be, also k = k(^,r))) for 

which the flow velocity angle at trailing edges is equal 

to "arccos-angle" (when "exit channel area" is equal to 
"throat area") and the triangle at fig. 2 A of Appendix A 
of lecture 4 is right-angled. An example of using of such 
an approach is presented at figures  1-4 (of present 

lecture), where 52-surface gas flow calculation results 
are shown for a 2-stage high pressure turbine. 

Figure 1 shows stream-lines (contours of mass flow 
rate of "primary" gas). Pressure contours are shown in 
figure 2. Note, that because of the property of scheme to 
be conservative the calculation is fulfilled both in axial 
gaps and within the bladed domains and it becomes 
easier to calculate the axial and angular loadings on 
blades (corresponding integrals are easily calculated 
using numerical fluxes without any additional 
simplifications). Figure 3 shows calculated distribution 
of degree of reaction for the first stage along the radius. 
The results of design office are marked by squares. 
Distributions of inlet gas velocity angles along radius 
are presented in figure 4. (lines with crosses correspond 
to calculated results using the present methods, squares 
- to design office data, solid line is distribution of 
geometrical inlet angles for rotor profiles; one can see 
that there are considerable angles of attack; later the 
geometry of this turbine was modified). 

At the next example one can see the comparison of 

gas flow calculation results using 2D (S2 -surface) and 
3D formulation. The gas flow through 1-stage turbine 
with additional vane at outlet was considered (see fig. 5, 
where the used computational grid for 2D problem is 
presented). Viscous losses in both cases were accounted 
for using dissipative forces, and the values of these 
losses were defined using generalized empirical 
relations of CIAM. Figures 6 and 7 shows 
corresponding stream-lines and pressure contours (for 
2D case). Distribution of degree of reaction along radius 
is shown in figure 8. Line with marks "+" corresponds 
to 2D approach, line marked by " x" - to 3D case, 
squares show experimental values at tip and at hub. 
Note that both approaches give satisfactory results for 
degree of reaction. Mass flow rates and power were 
also in good agreement one with another and with 
experimental data. (The difference of calculated and 
measured mass flow rates was less than 1% for both 
cases). But distribution of absolute velocity vector angle 
behind the rotor shows that the 3D approach gives 
results which are along whole height in better 
accordance with experimental data than the 2D one 
(fig.9). One can see from figure 10 that this difference 
between 2D and 3D calculation results is related to the 
difference in relative velocity vector angles behind the 
rotor (here lines with crosses correspond to 2D case and 
lines with squares to 3D one. All angles in these figures 

are counted from the cascade pitch; ß, is rotor inlet 

relative angle, ß2 is rotor outlet relative angle). The 2D 
approach evidently does not describe all three- 
dimensional features of gas in blade rows. So for 
accounting for these effects and also viscous effects one 
may introduce empirical dependence of deviation angles 
from some number of geometrical and gas dynamic 
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parameters (see, for example, [1], [5]). It is more 
convenient to introduce them to arbitrary discontinuity 
breakdown procedure at trailing edge line (see 
concluding notes of Appendix A of lecture 4). 

3. Modeling of viscous losses effects. 

If viscous losses are modeled using dissipative 
forces it is necessary to know loss coefficient values. (It 
is not important here, what one means by losses 

coefficient C,: in various cases it may be a different 
function of flow parameters; it is supposed only that 

C, = 0 when there are no losses in gas flow). Supposing 
that losses are small one usually write: 

C = C+C+C endwall 

^»tipcl.      ^ax.gap      ^cooling     •'•' (3.1) . gap   '  "^cooling 

where C, with subscript corresponds to losses, 
which   either   are   concentrated   in   some   domains 

(Ctr.Cndw.il>■■■)   °r   are   caused   by   any   process 

(Cooling>•••)• Such division is conventional and 
although really the different types of losses are not 
independent, it helps to estimate the loss coefficient 
values  and  to  distribute  them  in  space  in  Euler 

calculations. In (3.1): C 's "friction"   losses in 

boundary layers at blade profiles surfaces, C " trailing 

edge losses, Cndwaii " endwall losses, Cpcl - losses 

related to leakages in tip clearance, Cax gap    " friction 

losses in axial gaps, Cooling " l°sses which appear in 
cooling processes, etc. Some kinds of losses in (3.1) may 
be   further   divided   into   components.   Considering 

"friction" losses C one may select "angle of attack" 

losses C shock waves losses Chock' distinguish viscous 
losses before the "throat" section and after it, etc. 

Note that when one uses Euler equations system 
with spatially distributed mass sources for gas flow 
simulation, some kinds of losses are accounted for 
automatically. Among them there are the losses in shock 
waves. In some cases (for example, in some fan blade 
rows) they may be the main component of losses. 
Losses in mixing processes (for cooling turbines and 
compressors) are generated also automatically. 

Losses in boundary layers of blade profiles    C 

ideally are losses in cascades at S,- surface (excluding 
trailing edge losses). They may be defined by boundary 
layer flow calculations (in absence of extended 
separation   zones)   or by   numerical solving of 2D 

Navier-Stokes equations (in this case C are also 

defined). The last way is relatively costly and so during 
the design process some semi-empirical correlations are 

often used obtained by generalization of experimental 
data (see, for example, [3], [6]). Similar relations exist 
also for endwall losses (for example, [7]) and other loss 
components. Many design offices have own correlations 
for losses most suited to using families of profiles. 

One may also directly use experimental data for 
losses for considering blade rows (if they exist), but the 
models for loss components are useful also in this case 
for spatial distribution of losses in computational 
domain. 

Some loss components may be estimated using 
simple physical models (see, for example, [1], [2]). 

Let us consider in conclusion two attempts of 
simulation of gas flow through blade row passage with 
unshrouded blades. 

In experiment [8] "tip" clearance was at hub, 
turbine blade row of constant profile along height was 
motionless and hub surface could move. In the first 

example gas flow was simulated using a viscous S2 - 
surface formulation (in thin-layer approximation, see 
lecture 4). Two cases were considered:  8 = 0  and 
8 = 2.2 mm (8 is hub clearance thickness), blade 
height was 55mm, exit isentropic velocity coefficient 
was: X = 0.8. Gas leakage in hub clearance was 
modeled by the same way, as flow in axial gap domain 

(— = 0, see lecture 4). Hub surface was motionless. 

Algebraic Baldwin-Lomax turbulence model    [9] was 
used in the calculation. 

Calculated loss coefficient C, distribution along 

radius at exit section for the cases: 8 = 0 and 
8 = 2.2 mm are shown correspondingly in figures 11, 
12, the distribution of axial velocity (for 8 = 2.2 mm) 
is shown in figure 13 (gas flows from right to the left). 
Circles corresponds to experimental data of [8]. Here, 

loss coefficient C, is defined as: C, — 
v2-v2 
'ad 

V2 Y
ad 

where 

V is velocity vector magnitude,  Vad   is "isentropic" 

velocity and is calculated (together with  Tad ) from the 
next system: 

KTad) + ^Va
2
d=h(T.) 

S(PJad) = S(P.J.) 

(3.2) 

where p,, T, - total pressure and temperature at the 

inlet section of channel, p    is outlet pressure, h(T) 

and    s(p,T)    - specific enthalpy and entropy (see 
lecture 4). 
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Constant "profile" losses £ = 0.05 (some arbitrary 
value) were added using dissipative forces. (If one does 
not add these forces, the solution will be almost the 
same, as presented in figures 11-13, but far from the 

wall C,  will be equal to 0). 
As shown in figure 11, 2D viscous calculation 

allows to account losses in boundary layer at hub section 

but does not describe "secondary flows losses" Csec • In 

the case 8 £ 0 this calculation qualitatively describes 
some features of distribution of losses along radius, but 
there are large quantitative differences. 

The probable cause is that the flow in this region is 
essentially three-dimensional and so 2D calculations 
cannot clearly simulate it. But this approach could be 
useful for calculations in extended channels, nozzles, 
etc. "Secondary" and other loss components could be 
accounted for using dissipative forces or by other ways. 

Another simple model can be used in 3D Euler 
approach with averaging in the middles of axial gaps 
(see lecture 4). Let us consider the same example for the 
case   8 = 2.2 mm.   Together  with  usual   3D  flow 

computational domain an inviscid flow on S, -surface 
which coincides with butt-end of the blade is considered. 
Let m be arc length along the meridional projection of 
hub surface, r=r(m) - radius of current point at this 
projection, b=b(m) is variable relative thickness of 
radial clearance (thickness divided by 8 - one at 
leading edge of the blade, for example). Then the flow 
at this surface is described by equations (3.4) of lecture 

4. The simple algebraic grid was used in this S,-surface 
domain (this domain is shown in fig. 14, where one can 
see also streamlines for the case 8 = 2.2 mm). The 
boundary conditions for this problem are found from 3D 
flow field by extrapolation at current time step. The 
"non-reflecting" conditions were used for this 2D task. 
On the other hand  some  numerical fluxes at the 

boundary of S, -surface multiplied by 8 are used for 

calculation of corresponding source terms rrh, rrflVz, 

rrhVr, rrhV^, rrhH on right hand side of equations 

(1.8) of lecture 4. Usual boundary conditions are used 
on solid boundaries in 3D computational domain. Thus 
both 3D and 2D problems are solved simultaneously. 
Although one must solve 2D steady problem at each 
time step of 3D one. It is not very costly because the 2D 
solution at previous time step is used as initial condition 
for the current iteration. 

In this example the terms rrh,.... were distributed 
along one row of cells around the blade hub section 
profile (although one may also consider other variants). 
No empirical coefficients were used in this simulation 
(for applications one may use, for example, coefficients 

for velocity (Vz, Vr, V9 ), etc.). 

Calculated distribution of the loss coefficient 

C, averaged in angular direction is shown in figure 15 
for two different grids: the first one is more fine in 
radial direction (solid line; the cell radial size at hub 
was equal to 8 = 2.2 mm), and the other one is more 
coarse near the hub (dashed line, the cells were almost 
of equal size in radial direction; both grids had 
60 x 11 x 11 nodes). Circles show experimental data of 

[8]. Although radial distribution of C, in calculation 
does not reflect all features of experimental ones, 
integral values of losses are close. One can see it in 

figure 16, where C,s is an average value of losses for the 

clearance thickness 8 : 

1   hbi. 

hbl.   0 

where h is height and hbl = 50 mm (see [8]). The 

value C5=0 corresponds to the case 8 = 0. The 
experiments and calculations were performed for the 
cases: 8 = 0, 8 = 0.25 mm, 8 = 0.5 mm, 
8 = 1.0 mm, 8 = 2.2 mm. Line with "+" 
corresponds to calculated results, and line with squares 
to experimental data. These results show that described 
approach could be useful for estimation of this 
component of losses. Figures 17-19 show velocity vector 
field at various sections of 3D computational domain for 
the case: 8 =2.2 mm. Note, that this approach may 

be convenient    for unsteady calculations when 8 can 

depend on time: 8 = 8(t). 
Similar simple models may be considered also for 

some other kinds of losses using known current spatial 
distributions of all parameters in 2D and 3D 
computational domain. 

Some examples of gas flow calculations in gas turbine 
engine components. 

The described methods were used in gas flow 
calculations through a number of multistage 
turbomachines. Some examples are shown in figures 20, 
21 (see also [10], [11]). 

In conclusion let us consider an example of gas flow 
calculation through a by-pass gas turbine engine. The 

computational grid for this task (on S2-surface) is 
presented in figure 22. The domain of calculation 
consists of nine sub-domains. It includes the fan (one 
sub-domain), the compressor (three sub-domains), the 
annular combustion chamber (three sub-domains), the 
turbine with nozzle (one sub-domains) and by-pass duct 
(one sub-domain). Flame-tube surface is the boundary of 
computational sub-domain. Note also that the grid 
includes the space within the turbine first stator blades 
where gas can flow, and so some area is covered by 
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computational cells twice (but different sub-domains in 
this area has different values of blockage factor k and 
the sum of these values at the same point in meridional 
plane is equal to 1). 

Because in bladed regions the Euler equations (with 
additional terms in right hand side) were used, we do 
not need to model chemical reactions in this simulation. 
The effects of this reactions were modeled by source 

terms rrh, rrhVz, rrhVr, rrhV(p, rrfiH. It was supposed 

that the heat of combustion is released along the half of 
the flame-tube. Some empirical data were used for 
estimation of combustion efficiency [12]. 

It was assumed that the flame-tube surface has 
infinite number of infinitesimal holes and the ratio Cf of 
the area of these holes to the corresponding flame-tube 
surface element area was considered as a given function 
of tube point. Jets through the holes were modeled using 
the mass, momentum and energy sources. The values of 
this terms were obtained by special procedure of 
arbitrary discontinuity breakdown at the flame-tube 
surface, see Appendix. (It was assumed that air 
accelerates up to hole section without losses and then 
mixes with the air or gas within the tube along some 
distance defined by empirical relations). The cooling of 
the flame-tube through narrow annular gaps was 
modeled in similar way (but instead of normal direction 
to the tube surface one must consider the tangential 
direction and obtained source terms are proportional to 
8 - annular gap thickness). This approach, of coarse, 
contains a number of empirical coefficients which are 
necessary to obtain realistic total temperature 
distributuons at turbine inlet. Some results of steady 
state calculation are presented in figures 23-26. Main 
integral characteristics of flow (mass rates, power 
consumption, total pressure ratios, etc.) were in 
satisfactory agreement with design office data. Figure 23 
shows "mass flow rate" contours. These are the 
streamlines anywhere except in the domain within the 
flame-tube (because of the source terms). Static pressure 
and absolute pressure contours are presented in figures 
24,25. One can see that the most significant total 
pressure increase occurs in compressor diagonal rotor 
cascade. Although the integral level of total temperature 
at inlet of the turbine is in good agreement with design 
office data, some features of its distribution (figure 26) 
show that the model of flow in the combustion chamber 
must be further developed. 

Some results of 3D calculations for this engine can 
be seen in figures 27,28. 

After verification by experiments (correction of 
empirical information for steady solutions) the models 
may then be used for unsteady simulations. 

APPENDIX 

Some used simple models for flow near the flame- 
tube elements. 

Let S be the flame-tube surface with infinite 
number of infinitesimal holes with relative area (7 (fig. 
1A). The values of parameters for different sides of the 
surface will be marked by subscripts "1" and "2". 

Fig. 1A 

Let u be the normal component of the velocity 

W:u = (V-n). As ealier (lecture 4) the relations 
through shocks and expansion waves will be written in 
acoustic form (for simplicity). 

Let: pR =p-(pa)\, p[ = p2 + (pa)\. The 

unequality: p*L > p*R denotes, that air (gas) flows in 
positive direction (from 2 to  1,  see fig.   1A) and, 

inversly:   if  pR > pL   then   air  flows   in   negative 
direction. 

It will be assumed further that pL > pR. Then the 
next relations are considered (v,w - tangential 
to the surface component of 

velocity): 

PL-P2 + (Pa)(uL-u2) = ° 
SL ~ S2 

(v,w)L=(v,w)2 

(Al) 

P = PR 

PUG = pLUL 

s = sL 

h + -(u2+v2+w2) = hL+-{u2
L+v2

L + w2
L) 

(v,w) = (v,w)L 

(A2) 
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«L=0 
(A3) 

The parameter's values with subscripts "R" and "L" 
are used for the calculation of numerical fluxes for 
different sides of the surface. The values without 
subscripts are related to parameters at "hole section" 
and are used for the calculation of the source terms: 

• 
rm,       (velocity components are multiplied by some 
empirical coefficients). 

1 

Fig.2A 

Simular simple procedure was applied for 
modeling of the flow through narrow annular gaps 
which are used for cooling (fig. 2A). In calculation this 
gap was replaced by the nearest grid node C (fig. 3A). 

Fig.3A 

The extrapolated values of parameters served then 
as initial data for usual arbitrary discontinuity 
breakdown procedure (for tangential direction T : see 
fig. 3A) and obtained "large" values of parameters were 
used for calculation of source terms for both sides of the 

surface (and the term r m in this case was proportional 
to 8 - gap thickness). 
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Fig. 1.      Streamlines of gas flow through 2-stage high pressure turbine 

Fig. 2.      Pressure contours 
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Fig. 3.        Radial distribution of degree of reaction of the first stage (solid line - calculated results, squares - design 
office data) 
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Fig. 4.      Inlet relative velocity angles distribution for 1-st stage rotor blades 
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Fig. 5.      Computational grid for experimental turbine 

Fig. 6.       Streamlines for experimental 1-stage turbine 
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Fig. 7.       Pressure contours (S2 - solution) 
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Fig. 9.     Absolute velocity angles distribution behind the rotor blade row 
-—+ S2 - solution 
—-x 3D - solution 
D - experimental data 

Fig. 10.      Rotor relative velocity angles 
.—+— . S2 - solution 
—□_— . 3D - solution 
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average losses, C, 
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Fig. 11.      Averaged in angular direction losses 
coefficient distribution at exit (8=0 mm) 
     - calculated results, 
• - experimental data of [8] 
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Fig. 12.      Averaged in angular direction losses 
coefficient distribution at exit (8=2.2 mm) 
     - calculated results, 
• - experimental data of [8] 
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Fig. 13.        Axial Mach number distribution in the case 8=2.2 mm (calculation) 
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Fig. 14. Stream-lines on Sj-surface (on butt-end of the blade), 8-2.2 mm 

averaged losses coefficient, C, 

Fig. 15. 
height, mm 

Radial distribution of losses coefficient (5=2.2 mm) 
— - calculation (more fine grid at radial clearance) 
         - calculation (with more coarse grid at this region) 

- experimental data of [8] 
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losses coefficient , C~~C 

SD.O 0.5 
8 , mm 

Fig. 16. Dependence of endwall losses coefficient upon radial clearance thickness 
 1  calculation 
 D experimental data of [8] 

Fig. 17 Velocity vector field at hub section (8=2.2 mm) 
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Fig. 18.        Velocity vector field at suction side (5=2.2 mm) 
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Fig. 19.       Velocity vector field at pressure side (8=2.2 mm) 
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Fig. 20. Constant pressure contours in blade mid-span plane for the four stage high pressure 
compressor 

Fig. 21. Constant pressure contours in meridional section of the six stages turbine 
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Fig. 22. Computational grid for by-pass gas turbine engine 

Fig. 23.       "Mass flow rate" contours (streamlines) 

Fig. 24.       Static pressure contours 

Fig. 25.        Absolute total pressure contours 

Fig. 26.       Absolute total temperature contours 
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Fig. 27.       Pressure contours in mid-span plane for compressor with fan (3D solution) 

Fig. 28.     Pressure contours in mid-span plane fore turbine with nozzle (3D solution) 
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Simulation of steady and unsteady viscous flows in turbomachinery 
by 

V.G.Krupa, 
CIAM (Central Institute of Aviation Motors) 

2, Aviamotornaya St., 
Moscow, Russia, 111250. 

Abstract 

A Navier-Stokes code has been used to compute the 
viscous turbulent cascade flows. The numerical method 
employs implicit high-order accurate Godunov scheme 

and a two-equation (q - ©) turbulence model 
based on the intergration to the wall. The generation of 
the OH grid system for viscous cascade flow 
simulations is discussed. Numerical solutions were 
obtained for 2D and 3D turbine cascade flows and 2D 
unsteady rotor-stator interactions. Available 
experimental data are used for verification of the 
computed results. 

Introduction 
The drive towards higher jet performance has 

increased demands for accurate and detailed flowfield 
predictions. Cascade flowfields in turbomachinery are 
usually very complex due to existence of many complex 
flow phenomena including for example shocks and 
shock boundary layer interactions, horseshoe and 
passage vortices, secondary flows and boundary layer 
separation. Many of these effects are greatly affected by 
viscosity therefore the development of the reliable 
numerical simulation of the viscous flows is of primary 
importance. 

At the present time 2D and 3D inviscid codes based 
on solving Euler equations are extensively used for 
turbomachinery flow predictions. These relatively high- 
speed codes enable to assess aerodynamic performance 
of very complex turbomachinery configurations [ 1 ] but 
often require empirical correlations to account for 
viscous effects. Boundary layer codes are restricted to 
relatively simple geometry and can not be used for the 
calculation of separated flows. 

More accurate and reliable simulation of viscous 
flows in turbomachinery can be done on the basis of the 
Reynolds averaged Navier-Stokes equations. In the past 
decade due to progress of computers a large number 
Navier-Stokes solvers have been developed for 
turbomachinery applications (see, for example, [2-9]). 
These codes employ different numerical techniques and 
turbulence models. So the validation of the Navier- 
Stokes solvers has become increasingly important. 

In the present lecture some 2D and 3D testcase 
viscous flows in turbomachinery are considered. The 
Navier-Stokes equations are integrated by implicit high- 

order accurate Godunov scheme. For turbulence 

modeling the two-equation (q - CO ) turbulence model 
[10] with viscous sublayer resolution is employed. The 
detailed formulation of the numerical procedure was 
given in the previous lecture. Here, the method to 
generate O-H grid systems for 2D and 3D cascade 
geometries is discussed. To test the capability of the 
code to predict thermal characteristics and total pressure 
losses a number of 2D viscous cascade calculations were 
performed. The 3D viscous turbulent flows in the 
turbine cascades are considered. Although these 
calculations have been made on rather coarse grids they 
can illustrate the accuracy of the present method. And 
finally, the calculations of the viscous unsteady 2D 
rotor-stator interaction are presented. 

Boundary conditions 

In viscous cascade flow calculations the boundary 
conditions were formulated as follows. For solid 
boundaries on the airfoil surfaces and endwalls nonslip 

conditions for velocities, adiabatic (ÖT7 dv\ = 0) or 

isotermal (T = const) condition for temperature and 

for turbulent quantities q = Ö00 / dr\ = 0 are imposed. 
On the inlet and outlet boundaries of the computational 
domain the boundary conditions are imposed by taking 
into account the direction of propagation of the 
characteristics for one - dimensional (in projection on 
the boundary normal) unsteady gas flow. For (axially) 
subsonic inlet in the boundary layer the velocity profile 
and the value of the total temperature are specified 
while in the inviscid core of the flow the total pressure, 
the total temperature and two flow angles are fixed. The 
fifth nesessary parameter was determined from the 
computation domain using the characteristic relations. 

The (q,o) profiles in the inlet boundary layer were 
determined from the 'equilibrium' condition and the 
condition of the equality of the values of turbulent 

viscosity coefficient calculated from (q - 0)) model 
and the Baldwin-Lomax     algebraic  model.  In  the 

inviscid flow the values of q«, and © w are imposed. For 
an (axially) subsonic exit the static pressure is fixed, the 
other quantities are extrapolated from the interior. 
Along the periodic gridlines the periodicity conditions 
are enforced. 

Paper presented at an AGARD Lecture Series on 
"Mathematical Models of Gas Turbine Engines and their Components", December 1994. 



7-2 

Grid generation 

To achieve high-quality numerical results in the 
computation of viscous flows in turbomachinery 
cascades an efficient and robust grid generation 
procedure is needed. The important properties of the 
grid generation procedure are the ability to control grid 
point distribution in the thin regions (boundary layers) 
and the ability to achieve grid points periodicity between 
the upper and lower parts of the outer boundary of the 
computational domain. The first condition is necessary 
to resolve effectively turbulent boundary layers with 
viscous sublayers - in practice several near wall nodes 

must be located in the region y+ <5. The second 
condition is generally required for implicit numerical 
methods - in order to maintain numerical stability the 
periodic conditions must be treated in an implicit 
manner. 

The algebraic H-grid (fig.l) meets both conditions 
but often results in a highly skewing grid system. Also 
H-grid has rather poor resolution in the rounded leading 
and trailing edges of the blade. Nevertheless, H-grids 
have been succesfully used in many 2D and 3D viscous 
cascade flow calculations [2,5,8,11]. Widely used C- 
grids [3,9,7] also do not remove deficiency in the 
trailing edge. Detailed calculations in the vicinity of the 
trailing edge are important in terms of predicting both 
heat transfer and base pressure. The O-grid system, 
based on an algebraic technique [ 12], often does not 
allow to achieve periodicity of the coordinate derivatives 
at the outer boundary. 

One way to avoid above-mentioned difficulties is to 
use the combined OH system. This approach was 
applied in [4] for computation of viscous stator-rotor 
interaction. The systems of O-grid and H-grid had 
overlapping regions so interpolation of the variables in 
these regions was needed. The combined O-H grid based 
on an algebraic technique was used in viscous cascade 
flow calculations [ 13 ]. In [ 14 ], to achieve a greater 
smoothness of the grid an elliptic grid optimization 
procedure was developed. 

In the present lecture we will also describe a 
method for construction of the O-H topology grid for 
visc*ous cascade flow computations. We start with 2D 
case. 

The procedure involves two stages. In the first 
stage the O-grid around blade is generated by an 

algebraic method. In this stage the £ = const lines can 
be constructed orthogonal to the surface of the blade and 
grid points distribution near the rigid wall can be easily 
controled. In the next stage H-grid system is generated 
by solving the system of equations [ 15,16 ] 

where X = (x,y), a = ?„ • r„, ß = \ ■ r„, 

x,y - Cartesian coordinates; £,T] - general curvilinear 

coordinates; P,Q - control functions. 
As well-known, a second -order elliptic system of 

eq. 1 allows to be specified either point locations on the 
boundary or the coordinate line slope at the boundary 
but not both. In our case, for example for boundary 

r\ = const, point locations are defined either by grid 
points distribution on the outer boundary of the O-grid 
or by grid points distribution on the line of periodicity of 
H grid. As it was shown in [ 16] it is possible to achieve 
a specified line slope and the specified spacing of the 
first coordinate surface at the boundary by iteratively 
adjusting control functions P,Q in eq. (1). We used a 
similar technique to generate H-grid. 

Consider the r\ = const boundary line (the 

treatment of £ = const boundary line is similar). On 

this line r, and r^are known. Quantity rn can be found 

from specification of the desirable slope of line 

\ = const and spacing of the next coordilnate line 

r| = const at the boundary. From eq.l one can easily 
obtain: 

P = -(ar4-ßfn)-(af^-2ßf^+yrnn)/(aJ2)) (2) 

Q = -(Y?„ -ßr%)-(of% -2ßrt„ +Y^)/(YJ
2
), 

J = x?yt)-xny4 

The iterative procedure can proceed as follows 
(1) Assume initial grid point distribution for H- 

grid. In this step H-grid system can be constructed by 
algebraic method. 

(2) Evaluate r      r.   on t] = const boundaries, 

aru - 2ßf§„ + yr^ = -(a P?4+vQrn), 0) 

and r„, r^on £ = const boundaries, from the 

previous   grid   points   distribution,   using   central 

difference formulae. (For evaluation    r^, rni] points of 

O-grid system or condition of periodicity can be used). 
Evaluate control function P,Q from eq. 2 at the 
boundary. Evaluate the control functions in the field by 
interpolation from boundary values. 

(3) Solve eq. (1) to generate the grid. 
Steps (2) and (3) are repeated until convergence. 
Computational grid obtained by this method for a 

2D viscous cascade calculations are shown on fig. 2. 
The O-grid system has 120x25 points, the H-grid system 
has 95x40 points. In order to solve system of eq. (1) an 
ADI-method was employed and about 600 iterations was 
required to achieve convergence. 
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The construction of a 3D-grid system can be 
performed applying a 2D grid generation procedure on 
each radial surface. In the general case, when the radius 
of a radial surface is varying with axial distance, the 
orthogonality of the grid can't be retained. Figure 3 
shows a 3D view of an OH grid system obtained by this 
method for a typical rotor blade. 

Computational results 

The computational codes based on the numerical 
schemes described in the previous lecture have been 
extensively tested for 2D and 3D viscous cascade flow 
calculations. Here we would like to present some 
computational results obtained by this method. 

Figures 4-7 show the computational results [ 17] 
for a rotor blade, which was experimentally investigated 
by Consigny and Richards [ 18 ]. In this case an H-grid 
system consisting of a 100x60 grid points was 
employed. The minimum distances from the nodes of 

the grid to rigid surfaces were 3-10"  c, where c is 

chord-length, which corresponded to y+ » 0.3. Courant 
number Cu was varied from Cu = 5 -s- 8 in initial steps 

to Cu = 50-=-100, after which the calculations were 
continued with a constant value of Cu (for each cell). 
Figure 4 shows a typical history of convergence where 
s is a maximum residual, n is a number of iterations. 
Lower and upper curves correspond, respectively, to the 
residual    of    the    Navier-Stokes    equations    and 

the (q-ffi) turbulence model equations. The 
computations have been performed for an exit Mach 

number Mout = 0.92, Reynolds number based on the 

inlet conditions and blade chord Re = 9.42-105 and 

the temperature of the wall Tw = 294° K .Figure 5 
shows the comparison between the predicted and the 
measured isentropic Mach number along the blade. The 
Mach contours are shown in fig. 6. Figure 7a,b,c shows 
the       predicted        heat       transfer       coefficient 

Q = qw / (TQW - Tw ) on the cascade surface in 

comparison with experimental data for three different 

levels of inlet turbulence: Tu«, = 0.8% (fig.7a), 

Tu* = 3.0% (fig.7b), Tu«, = 5.0% (fig. 7c). On the 

suction surface the (q - (0 ) turbulence model displays 
at least qualitatively the capability to predict laminar to 
turbulent transition.    However, on the pressure side 

the (q —©) model underpredicts the heat transfer. 
Note that the Baldwin-Lomax algebraic model allows to 
achieve a better agreement with experiment on the 
pressure wall for low level of inlet turbulence (fig.7a). 
(In this case the locations of the transition have been 
inferred from experimental data). 

A set of the computations have been performed to 
assess the capabilities of the developed Navier-Stokes 
solver to predict accurately losses in turbine cascades. 

For comparison, a vast experimental data conducted in 
CIAM [ 19 ] was used. We will present some 
computational results for turbine cascades designated as 
BL40, BL48, BL53, BL108, BL157, BL166. The main 
geometrical characteristics of these cascades are 
presented in Table 1; details of the blade geometry are 
available in [ 19 ]. 

For calculations OH grid system consisted of the 

6800 points was used. The free-stream values of   q«, 

and «a«, imposed at the inlet based on specified free 
stream    turbulence    intensity    and    length    scale: 

Tua> = J2l3qJua> = 5.5%, 

l.=q./©. = 0.005t. 
Figure 8 shows the predicted isentropic number X 

(X - is the velocity coefficient) on the surface of the 
blade BL40 in comparison with experiment [ 19 ] for 

various values of the exit number Xout. The agreement 
with experiment is generally good. The Mach number 

contours for Xout = 1.07 are shown in fig 9. The shock 
system associated with the trailing edge is clearly 
resolved. The loss coefficient and the base pressure 
coefficient are shown in fig. 10 . The loss coefficient 
and base pressure coefficient are defined as: 

l-(^)2, Apt = "t2       *2 

Ip   V2 
«K2is v2is 

The index 2 corresponds to the averaged values at the 
outlet. 

The predicted results are in good agreement with 
experiment results for exit subsonic and supersonic 
velocities. 

To assess the accuracy of the numerical method 
several computations have been performed on fine grid 
contained   27200   points.   Computed   Mach   number 

contours for blade BL48 at X^ = 1.27 are shown in 
fig. 1 la (6800 points grid) and in fig. 1 lb (27200 points 
grid). The predicted and the measured loss and base 
pressure coefficients are plotted in fig. 12. The 
numerical results obtained on the different grids are in 
reasonable agreement. The predicted loss coefficient is 
generally in a good agreement with experiment while 
for the base pressure a quite large difference is observed. 
Since grid refinement does not allow to achieve a better 
agreement with experiment, this discrepancy is 
associated rather with turbulence modeling than with 
numerical errors. 

The predicted and the measured distributions of the 
isentropic velocity coefficient X on the surface of the 
blade BL166 are shown in fig. 13. A discrepancy can be 
observed on the pressure side of the blade where a quite 

large (-0.8 < s/t <-0.15) separation zone exists. 
Mach number contours for subsonic and supersonic exit 
velocities are shown in fig. 14. Figures 15-18 show the 
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predicted loss coefficient and base pressure coefficient 
for blades BL166, BL53, BL108, BL157 respectively. 
For most cases the agreement berween measured and 
predicted loss coefficients is quite satisfactory. 

The 3D calculations have been performed for the 
low-pressure turbine cascade, which the flow was 
investigated experimentally in [ 20]. The cascade had 
the following principle geometric parameters: axial 

chord Cx = 52.5  mm, chord C = 55.9 mm, pitch 

t = 31.5 mm, and height of the cascade h, = 95.8 mm 

at the inlet and h2 =101.6 mm at the outlet. The vane 
profile was constant over the height of the cascade; the 
profile coordinates are given in [ 20 ]. 

The flow parameters used in the calculations 
corresponded to the flow in a low pressure turbine 
cascade at its design condition: the isentropic exit Mach 
number  M = 0.702,  the  isentropic  exit Reynolds 

number Re = 2.9-105, inlet flow angle 38.8°. The 
endwall boundary layer specified at the inlet plane are in 
accordance with experiment. In view of the symmetry of 
the problem the calculations were carried out to half of 
the height of the cascade. 

The H-grid consisted of 81x27x40 nodes in the 
axial (x), radial (y) and azimuthal (z) directions. 

The predicted and measured midspan isentropic 
Mach number distribution is presented in fig. 19 . 

The limiting streamlines near the endwall are 
shown in fig. 20 in comparison with experimental data 
[ 20 ]. Fig. 21 shows the predicted and measured 
secondary velocity vectors in the traverse plane at 

X = 1.42cx. Total loss pressure contours C, are plotted 

in fig. 22 . Here, C, = (p0oo - p0)/ (p02 ~ P2). Pois a 

total pressure, the index CO relates to the free streem 
value, the index 2 corresponds to the averaged values at 
the outlet. The calculation reproduces the main features 
of the flow although the predicted locations of the 
centers passage and trailing shed vortex are different 
from experiment. The predicted spanwise distributions 
of pitchwise averaged total pressure loss coefficient and 
exit flow angle with comparison of the experiment are 
given in fig. 23. The computed results are in reasonably 
good agreement with the experiment. 

The calculations have also been performed for this 
turbine cascade at its off-design conditions [ 27 ]. Figure 
24 a,b shows the limiting streamlines on the suction side 

for Re = 1.5-105 and Re = 6-105, respectively . At 

Re = 1.5 • 105 a large separation zone can be observed, 

at Re = 6-105 the boundary layer is turbulent (in 
calculation and experiment [21]) on the suction side, 
which prevents separation. The pitchwise - averaged 
total pressure loss coefficient and exit flow angle are 
compared with the experiment in fig. 25 and fig. 26 . 

Although the predicted maximum in distribution of C, is 
in a fairly good agreement with experiment, the 
calculations exaggerate the losses in the central part of 
channel. 

Figure 27 shows the predicted and measured 
midspan isentropic Mach number for angles of attack 
a = -20.3° and a = +8.6°. For a positive angle of 
attack the flow remains attached except in the small 
region near the leading edge. For a = -20.3° the 
separation zones at the midsection are  located at 

0.69cx <x<0.98cx  on the suction side and at 

0.02cx <X<0.31cx on the pressure side. This is 
roughly correct with experiment. The spanwise 
distributions of pitchwise-averaged total pressure loss 
coefficient and exit flow angle are shown in fig. 28 and 
29. 

Computations have been performed for linear 
turbine cascade with straight endwalls studied 
experimentally at CIAM [28]. The main geometrical 
characteristics of cascade were: chord length 
c = 63mm, pitch t = 41mm, height h = 100mm. 
The profile of the blade corresponded to hub section of 
the rotor blade of fourth turbine stage. A total number 
of 217600 grid points were used for O-H grid system 
(fig.   30).  The flow parameters  were:   inlet  angle 

a = 40.3°,    exit   Math    number    Mout =0.565, 

isentropic exit Reynolds number Re = 7.4-10.To 
reduce the losses the original cascade was redesigned 
[28]. Fig. 31 shows the limiting streamlines on the 
suction side of the original (fig. 31 a) and modified (fig. 
3 lb) blade. For original cascade a separation zone can 
be observed while for modified cascade the flow remains 
attached. Experiment [28] also indicates the separation 
on the suction side of the original blade but the 
extension of separation zone is underpredicted in 
calculation. For this reason, a quite large discrepancy 
between predicted and measured total pressure 
coefficient exists for original cascade (fig. 32), for 
modified cascade the computed distribution in a good 
agreement with experiment. 

The calculation has been performed for supersonic 
stator cascade (CA-2) studied experimentally at CIAM. 
The detailed cascade geometry and experimental 
conditions are available in [29]. The inlet flow assumed 

to be axial, the exit Mach number Mout = 1.35. A total 
number of 248000 grid points were used for this case. 
Figure 33 shows the O-H grid system for a blade-to- 
blade plane, and the H-grid system for a meridional 
plane. Computed Mach number contours at midspan are 
shown in fig. 34. The distributions of mass-averaged 
total pressure loss coefficient and exit flow angle are 
presented in comparison with experiment in fig. 35a and 
35b, respectively. The computed results are in a good 
agreement with experiment. 

Now we will present some computational results for 
a 2D unsteady rotor-stator interaction. The rotor-stator 
configuration considered herein is the large scale 
turbine model of Dring et al. [ 22 ]. Several Navier- 
Stokes analyses [ 4,23,24 ] have been performed for this 
configurations but in all of them an algebraic turbulence 
model was used. This may not be quite appropriate for 
unsteady  rotor-stator  interaction  especially  for  the 
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region where the rotor blade intersects the wake of the 
stator blade. In the present calculations the two-equation 

(q —CO) turbulence model was employed. Three 
different numerical schemes of different levels of 
accuracy in time have been used in the present 
calculations: first-order (implicit Euler scheme), second- 
order (Crank-Nicolson scheme) and implicit third-order 
accurate in time schemes [ 25 ]. The details for 
numerical integration procedure are given in a previous 
lecture [ 25 ]. 

The actual experimental configuration consisted of 
22 stator vanes and 28 rotor blades. Since in the present 
calculations the number of Stators and rotors was 
assumed to be equal, the rotor geometry was rescaled by 
a factor 28/22. 

Patched OH grid systems were used for 
calculations. The computational grid (fig. 36 ) consisted 
of 18000 nodes. The minimum distance from the first 

point to the wall is about 10~5 t , where t is a pitch- 
length. An axial gap between the stator and the rotor 
was assumed to be equal to 15% of average axial chord. 

The rotor rotational speed Q was 1.28U,,,, where u«, 
is the free-stream velocity at the inlet of the stage. The 

value u.3 (unknown before the solution) was calculated 
from the assumption that inlet Mach number was 
M=0.07. The inlet flow angle was assumed to be axial. 

The value of the static pressure was P = 0.96P0oo, 

where P^ is the free-stream total pressure. The values 
of the turbulent quantities were 

q»/11» = 0.01, ffl^t/u^ =6.5,   the   free   stream 

Reynolds number was 105 per inch. The treatment of 
the patched boundaries between the O- and the H-grids 
in the stator and rotor regions and at the stator and rotor 
H-grids was based on the technique developed in [ 4 ]. 
This approach allows to preserve the conservation of 
fluxes across a patch line. 

Calculations have been performed a with time step 

T = 0.002T, where T (period) is the time during 
which rotor blade completes one cycle. A rotor cycle 
corresponds to the motion of the rotor through a 
distance equal to pitch. Four iterations of the iterative 
algorithm were performed at each step. About six rotor 
cycles was required to achieve a periodic solution. 

Figure 37 shows the time-averaged stator surface 
pressure distribution in comparison with experimental 
data [ 22 ]. The time averaged pressure coefficient is 
defined as: 

r _ P-Pooo 

practicaly identical and in a good agreement with 
experimental data. Figure 38 shows the time-averaged 
pressure coefficient for the rotor. Computed results 
obtained by a third-order accurate scheme are in a 
slightly better agreement with the experiment. 

The pressure amplitude Ca on the surface of the 

stator are plotted in a fig. 39 . The Ca is defined as 

/"">    _     max 

where p is the time-averaged (for period) pressure, p^ 
is the time-averaged inlet free stream density. The 
predicted results obtained by different schemes are 

^ 

where P^ and P^ are the maximum and minimum 
pressures that occur over a cycle at a given point. 

The predicted and measured pressure amplitude 
distributions for the rotor are shown in fig. 40 . Note, 
that the difference in the magnitude of pressure 
amplitude obtained by different schemes may achieve 
15-20 %; the application a of second and third order 
accurate schemes in comparison with a first order 
accurate scheme does not allow to obtain a much better 
agreement  with  experiment.   The   computed  Mach 

number contours at instants t = 0.23;0.567;0.9T are 
shown in fig. 41 a,b,c. 

Numerical results have shown the developed 
Navier-Stokes solver is able to predict quite accurately 
the total pressure losses for 2D viscous transonic flows 
in widely varing cascade geometries. For 3D viscous 
cascade flows the agreement between computed and 
measured results is also satisfactory in most cases. 
Reasonably good predictions have been obtained for 2D 
unsteady rotor-stator interaction. 
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Fig. 1        100x60 H grid. 

Fig. 2 a       6800 O-H grid. 
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Fig. 2b    Zoomed view of the leading edge. 

Fig. 2c     Zoomed view of the trailing edge . 
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Fig. 3    3D view of O-H grid system for rotor blade . 

Fig. 4     Convergence for 2D viscous cascade flow calculations 
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Fig. 5      Isentropic Mach distribution 

Fig. 6      Mach number contours 
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O- experiment   [19] 

Fig. 8        Isentropic X- number distribution for the BL 40 cascade . 
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Fig. 9    Mach number contours for the BL 40 cascade. 
Xout=1.07. 
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(a) 6800 grid points 

(b)    27200 grid points 

Fig. 11      Mach number contours for the 
BL 48 cascade, Xout = 1.27 
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O - experiment [19] 
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Fig. 13 Isentropic X - number distribution for the BL 166 cascade . 



7-19 

Fig. 14 a    tout = 0.74 

Fig. 14 b      tout = 0.92 
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Fig. 14 c    Xout=l.l 

Fig. 14 d     tout =1.23 

Fig. 14    Mach number contours for the BL 166 cascade 
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vs exit Xout. 
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Fig. 22        Total pressure loss coefficient contours at 1.42 Cx 

Fig. 23       Span wise variation of pressure loss and exit angle at 1.42 Cx 
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Fig. 24a Limiting streamlines on the suction side, Re=1.5*10' 
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Fig. 30      3D view of 217600 O-H grid system 
for linear turbine cascade. 
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Fig. 35     Spanwise total pressure loss (a) and exit angle (b) 
for the CA-2 vane . 
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Fig. 36 Computational grid for 2D rotor-stator interaction 
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Fig! 37 
X/C xs 

The averaged stator surface pressure distribution 
O - experiment [22] 
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Fig. 38      The time-averaged rotor surface pressure distribution 
O - experiment [22] 
  - 3-rd order accurate scheme 
— —-  - 1-st order accurate scheme 
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Fig. 39      Pressure amplitude coefficient distribution for stator 
O - experiment [22] 
  1-st order accurate scheme 
•   •   •   • - 2-nd order accurate scheme 
          - 3-rd order accurate scheme 

2.5 •■ 

Fig. 40 

.5 -IX)        -0.5        0 öi to l!s 
"'Sir 

Pressure amplitude coefficient distribution for rotor 
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Fig. 41       Instantaneous Mach number contours at t=0.23T (a), t=0.567T (b), t=0.9T (c) 
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Application of multidisciplinary models to the cooled turbine rotor design 

by 
Dr. V.K. Kostege, Prof. V.D.Venediktov, Dr. A.V. Granovskii 

CIAM (Central Institute of Aviation Motors) 
2, Aviamotornaya St.., 

Moscow, Russia, 111250 

Abstract 

A computer program for designing turbine vane 
and blade cooling systems is discussed. This program is 
based on the complex use of 2D and 3D gas dynamic, 
heat-transfer and thermostress models. 

FEM Thermostress models are formatted based on 
geometry data from the computer design system. One- 
dimensional mass flow and conjugate thermal models 
are quickly created by using graphic dialogue regimes 
for different cooling systems. Quasi-3D and 3D 
thermostress models are used to carry out cooling 
system optimization or comparison of alternative 
cooling systems 

Introduction 
High temperature, spatial flow characteristics and 

film cooling systems, make for difficult problems for 
designing high work turbines. Design of vanes and 
blades is based on complex use of different models such 
as: 

- inviscid, viscous and mixed 2D and 3D methods 
for calculation gasdynamic processes 

- statistical (regression) method for calculation 
losses in turbine blades; 

- methods of plane and spatial blade geometry 
generation; 

- quasi-3D and 3D conjugate heat - transfer 
models; 

- 2D and 3D stress-strain-state models 
Designs are implemented in an iteration process 

using multiple simultaneous solutions of straight 
aerodynamic, heat transfer, and structural strength 
tasks. 

Operation of a blade cascade under transonic 
conditions is characterized by a complex flow structure 
accompanied by local supersonic zones, inner and outer 
- edge shocks, and other phenomena. Designing a blade 
system of optimized construction (accounting for gas 
dynamics, strength, manufacturing technology, etc.) is a 
formidable, if not indeterminate, task. For this reason, 
when designing this equipment, which presently is 
mainly concerned with the geometry of the blade 
cascades and does not consider the specifics of actual 
operation, the blading may have a rather poor aero - 
dynamic efficiency. Therefore, the shape of the blade 
passage must often be modified [1] when improving the 
turbine by increasing the aerodynamic efficiency of the 
blading. 

The objective of existing methods for designing 
and optimizing compressor and turbine blade cascade is 
to provide separation and shock - free flow in the 
cascades. This is achieved by solving the inverse 
problem [2] and direct problems in the iterative process 
[3 - 6]. A certain preferred velocity distribution along 
the contour of the blade, ensuring minimum friction and 
wave losses, is the basis for calculations. Specifically, 
when designing supercritical blades for compressors [5], 
the convex surface of the blade is corrected at points 
where the maximum over expansion of the flow gives an 
intense shock wave capable of causing the separation of 
flow from interaction with the boundary layer. 

Note that designing transonic blade cascades by 
solving the inverse problem has several disadvantages. 
The blade cascade obtained as a result of solving the 
inverse problem may fail to meet the requirements of 
blade cooling, structural strength of the blades, 
production techniques, etc. 

A real modification of the blade cascade which 
meets these requirements may differ substantially from 
the optimal one. The numerous restrictions encountered 
by the designers necessitate that compromise solutions 
be taken. Therefore, it is best to carry out the design 
process in several stages, in which several direct and 
inverse problems are solved. 

1. Linear blade cascade design 

A multi-stage technique was recently developed at 
CIAM [7]. In the first stage, the optimum combination 
of free (variable) geometrical parameters of the cascade 
ensuring a low level of blade losses is selected, taking 
account of restrictions on the shape of the blades. This 
can be accomplished either based on design experience, 
using data from charts of experimental characteristics of 
planer cascades, or using statistical (regression) models, 
which generalize experimental data on losses in turbine 
blade cascades [8]. Such regression equations can be 
used as models to evaluate losses depending on the main 
geometrical parameters of the cascade and its operating 
conditions. 

After selecting the optimal combination of 
geometrical parameters (with given restrictions) 
ensuring a low level of blade losses, a cascade may be 
constructed by employing any appropriate analytical 
method. This concludes the first stage of the design, 
which can be regarded as the solution to the inverse 
problem on the basis of statistical regression models. 

Paper presented at an AGARD Lecture Series on 
"Mathematical Models of Gas Turbine Engines and their Components", December 1994. 
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In order to ensure minimal losses in a cascade of a 
particular shape, optimization is performed in the 
second stage using analytical (gas - dynamic) models, in 
particular by employing the method of realization [9], 
by calculating the boundary layer on the blades, and so 
on. The second stage also includes an analysis of the 
distribution of the effective velocity at the blade surface 
and in the blade passage, the intensity of the shock wave 
at the outlet from the cascade, and the susceptibility of 
the flow to separate. If necessary, the shape of the blade 
may be changed and all calculations may be repeated 
until a cascade with low blade losses and a favorable 
flow pattern is obtained. 

As is well known, the flow, and consequently the 
aerodynamic efficiency, of the transonic cascade is 
greatly influenced by the shape of the suction side of the 
blade, particularly the distribution of its curvature in the 
region of the throat.; Usually the shape of this section is 
characterized by the stagger angle. Calculations have 
shown that by redistributing the curvature of the suction 
side of the blade in the region of the throat, even at a 
constant stagger angle, the flow parameters in the 
cascade may be improved: specifically, maximal over 
expansion of the flow at the suction side may be 
substantially reduced [3]. 

The high sensitivity of the transonic flow to even 
minute changes in the blade contour, and the complexity 
of the flow pattern in the blade passage for transonic 
operating conditions do not allow general 
recommendations to be made regarding the preferred 
distribution of curvature along the contour of the blade, 
especially on the suction side of the blade. However, we 
may make the following qualitative assessment based on 
numerous calculations and experimental data: when 
correcting the blade contour, careful reduction of the 
intensity of the shock waves existing at the leading 
section of the suction side, which cause a thicker 
boundary layer at the suction side and its separation due 
to the shock near the trailing edge. Also, lengthy 
diffusing sections on the suction side should be avoided 
especially when the pressure in the flow near the wall at 
the trailing edge of the blade greatly exceeds the average 
pressure downstream of the cascade, because it 
contributes to the separation of the flow. 

A monotonically accelerated flow along the suction 
side of the blade with small over expansion on the throat 
and velocity at the outlet of the suction side are the most 
favorable conditions. 

To ensure aerodynamic optimization of the shape 
of the suction side, the second stage of the design should 
employ an automated method, in which the curvature of 
the surface is correlated to the local velocity of flow. 
Based on equations for planar gas flow expressed in 
physical coordinates (the x - axis is orthogonal to the 
stream lines), we obtain the following relationship: 

dX/X = -dR/R = dK/K, (1) 

where R and K = 1/R are the radius of curvature of 
the stream line and its curvature, respectively. 

It follows that an increase in the curvature of the 
surface (dR < 0) at an arbitrary point on the suction side 
of the blade causes a local increase in the velocity of 
flow (dX>0), while reduced curvature causes a 
deceleration of flow (with dR >0, dX<0). This 
phenomenon is qualitatively similar to the distribution 
of velocity in a vortex, that is, the local stream velocity 
is directly proportional to its curvature. 

We optimize the shape of the suction side of the 
blade with the following parameters remaining invariant 
xhord 1, pitch t, blade angle y, throat section a2 , 

thicknesses dx and d2 of the leading and trailing edges, 
and with an invariant shape of the blade pressure side. 
Parameters such as the stagger angle and the maximum 
thickness of the blade may be subject to change in the 
course of optimization. The shape of the suction side of 
the blade is varied under the above conditions by 
redistributing the curvature along its contours. 

A series of direct problems were solved in 
optimization by the realization method using an 
iterative process. At each design stage, we analyzed the 
calculated velocity distribution along the suction side of 
the blade, and corrected the distribution of curvature of 
the blade suction side according to the level of the 
velocity and character of the distribution. In accordance 
with the above mentioned influence of the curvature on 
the velocity (1), it varied at the nodes of the calculation 

K^K^aik-X^) (2) 
where Ki and Ki were the initial and final values 

for the curvature at the i - th node of the net; 

k = Kdi I ^2ad and ^adi = ^adi I ^2ad 

were the given and calculated values of the relative 
velocity Xad at the i - th point in the current iteration 
step. 

Then the contour of the blade face was 
reconstructed using the changes distribution of the 
curvature, and the calculation net near the suction side 
was corrected retaining the orthogonality of the cells (in 
the calculation, the shape of the blade was given by the 
coordinates of nodes in the net within the blade 
passage). In the next iteration step, we used the flow 
parameters in the net cells of the previous stage to 
calculate the new velocity distribution Xad along the 
blade contour. This process was continued until a 
cascade was obtained with over expanded flow at the 
blade suction side :>,max < 1.1 to 1.15. Optimization of 
the shape of the blade suction side usually requires 5 to 
7 iterations, in which variations are made in the blade 
curvature distribution using the relaxation coefficient 
^ = 0.8. 

In each step we changed the shape of the blade 
suction side starting from a given point on its front, 
such as the point of tangency with the leading edge. At 
this point, the coordinates, the first derivative and the 
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curvature are maintained invariant during optimization. 
The shape of the blade side is reconstructed in 
accordance with the corrected curvature by numerical 
integration of an ordinary second -order differential 
equation using the Runge - Kutta - Feldberg technique. 
Here, the curvature is expressed through first and 
second derivatives as follows: 

y"-K(x)(l + y2)m=0 (3) 
The throat a2 and the thickness of the trailing edge 

d2 may be changed in the optimized cascade. Therefor, 
an additional correction of the distribution of the 
curvature on the blade side is necessary to maintain a2 

and d2 at the level of the initial cascade. This keeps the 
flow rates of the gas and the cooling air in the optimized 
cascade invariant. The additional correction does not 
change the character of the distribution of the curvature 
on the blade side. 

Fig. 1 illustrates how this method works by 
showing distributions of the curvature and the velocity 
along the contour of the blade suction side i in the 
course of the iteration process. Substantial over 
expansion of the flow appears in the initial cascade 
(X.max = 1.41) with a section having intensive 
diffusing flow. After performing corrections, the shape 
of the blade suction side was obtained with a small over 
expansion of flow (Ä,max = 1.15). 

The iterations were made with a large relaxation 
coefficient (A. = 1.15) to obtain a vivid picture; this 
caused substantial redistribution of the blade suction 
side curvature as early as the third iteration step. The 
curvature became more pronounced in the zone of the 
trailing edge because of the conditions a2 = const and 

d2 = const. However, this did not result in a substantial 
local increase in the diffusing ratio (Fig. lb). Note that 
corrections may be stopped at any iteration step, which 
satisfies the requirements of the designer concerning the 
character of the flow and the shape of the blade. 

Calculations of parameters for the boundary layer 
show that the momentum thickness in the corrected 
cascade is much less than in the initial cascade (Fig. 
lc); it corresponds to a reduction in friction losses by 
8^ = 0.01 to 0.015. From Fig. Id we see that the 

maximum thickness is reduced in the optimized blade; 
however, the stagger angles 8 and the wedge angle of 
the trailing edge C02 increase, which facilitates design 
of the blade cooling system. 

In Fig. 2, the distribution of velocity A^along the 
contours of the blade is shown for the initial and 
optimized cascades when A,2a^ = 0.90. Over 
expansions of the flow (A,max = 1.22) ending in a 
shock wave occures in the initial cascade on the blade 
suction side near the geometric throat. A velocity 
distribution without a shock can be obtained for the 
correction of the blade in accordance with the method 
we have developed. There were only minor changes in 

the distribution of the curvature and in the shape of the 
suction side of the blade (experimental data concerning 
cascade 2 are found in [8]). 

The method proposed in this lecture was also used 
to reshape the root section of a turbine rotor cascade that 
had already been manufactured, in which substantial 
losses were noticed. When reshaping, besides correcting 
the curvature of the suction side of the blade, we slightly 
reduced the blade setting angle yand the thickness of 

the trailing edge d2. The initial and optimized cascades 

were investigated experimentally for R e ~ 10 and a 
level of turbulence at the inlet of 8 =0.06 to 0.08. 

Figure 3a shows the distribution of the curvature of 
the blade suction side in cascades 3 and 4, from which 
we see that the curvature at the middle of the blade is 
greater in cascade 3 than in cascade 4. The curvature of 
optimized cascade 4 is somewhat more pronounced near 
the throat than in cascade 3. This redistribution of 
curvature on the blade suction side resulted in a value 
for "kiad = 0.72 under working conditions (Fig. 3b) 
instead of substantial over expansion of the flow on the 
blade suction side in cascade 3 to X,a^max = 1.03, with 
subsequent deceleration in the elongated diffusion 
section to X^ =0.7, and a reduced over expansion 
and diffusion ratio of the outlet section in cascade 4 
0^max./^2ad = 1-2 instead of 1.44 in cascade 3). 

The unfavorable flow pattern on the blade suction 
side in cascade 3 causing the separation of the flow and 
substantial blade loss is clearly seen when examining 
the wall flow in cascades 3 and 4 (Fig.4). 

The flow was visualized by introducing a fast - 
drying dye upstream of the cascade for three to five 
seconds [11]. After drying, the dye traces produced a 
vivid picture of the wall currents under the operating 
conditions being studied. Fig. 4b shows that in 
optimized cascade 4 with 'k2ad = 0.72, the dye traces 
on the blade suction side studied coincide with the 
direction of stream lines indicate that the flow is 
regular, vortex - free, and continuous. Because 
separation was absent in cascade 4, the blade losses 
were much lower (by 8£w ~ 0.03-0.04 as compared 
with the initial cascade 3), as shown in Fig.3c. 

The proposed method of aerodynamic optimization 
of transonic turbine blade cascades is based on the 
correlation of the velocity of the flow and the curvature 
of the surface being circumscribed, and can substantially 
accelerate work on improving turbine blade cascades. In 
some cases, this method will substantially reduce losses 
by slightly changing the geometry of the cascade and the 
blade system as a whole. 

2. Designing of blade's cooling system 

After generating the external blade surface, design 
of the blade cooling system, which provides the 
necessary blade surface temperature state for a given 
mass flow rate, is implemented. Application in the 
design stage of quasi-3D heat transfer models allows 
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comparitive analysis of alternative cooling systems, and 
optimization of the chosen cooling system. The profile 
part of the blade (after the aerodynamic design is 
complete) is described in terms of external contours of 
cross sections. Internal contours are set down for 
generating smooth internal cavities in some base 
section. Cavity sizes are regulated by giving wall 
thickness at some points of the external contours. The 
next step is the generation of internal contours for other 
blade sections by interpolation. 

Existing information about the geometry is written 
in formats DXF or IGES and used in geometry 
simulation for generating cooling passages. 

In dialog graphics regime partitions, matrix, 
injection holes and other elements can be generated. 
Contours, which include metal, form and create an input 
file for FE grid generation. Preparation of the full blade 
profile part geometry is provided by FE grid generation 
in all sections and by uniting all grids in one FE grid. 
Geometrical and FE models which have been described 
are implemented quickly and clearly, but final passage 
geometry is determined by an interactive process which 
demands designer's experience. 

First check of geometry is the air mass flow 
characteristic of the blade's cooling system. Geometry is 
corrected until the correct air mass flow is obtained. 
Hydraulic model generation is carried out for regular 
structure (matrix, pin fin) automatically and for non 
regular stuctures in graphic dialog regime. Calculation 
of passage cross sectional areas and hydraulic diameters 
are implemented in "Edit" regime; or in the regime for 
the establishment of section connections; or when 
complete information about injection hole's (heat 
sources) is formed. Fig. 7 presents a copy of the picture 
on the display screen, appropriate to this regime of 
hydraulic model forming. Hydraulic resistance are 
calculated on the bases of given editor value of friction 
coefficients, or given in regime "Edit". 

Heat transfer and air heating are calculated only for 
branches connected with FE grids. 

For calculation of heat transfer in graphic dialog 
regime numbers A and n (Nu=ARe**n) are given. 

On Fig.8 gas boundary condition are presented 
(film cooling and boundary layer calculation) 

For temperature field calculations in blade sections, 
the next input data are prepared: 

distribution by height of gas temperature and 
pressure before the blade, gas pressure behind the blade; 

air pressure and temperature on entrance in the 
blade's cooling system. 

The blade's quasi-3D strength model is 
implemented on the FE grid, using temperature 
calculations, in conjunction with received temperature 
fields and gas and centrifugal forces. 
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Verification of Multidisciplinary Models for Turbomachines 

by 
Dr.Kostege 

CIAM (Central Institute of Aviation Motors) 
2, Aviamotornaya ST., 

Moscow, Russia, 111250 

Abstract 

Accurate prediction of the temperature distribution 
in rotating blades is an important and difficult task. An 
approach for the verification of hydraulic and thermal 
models in real blades is discussed in the lecture. For 
static conditions, predicted local internal convective 
heat transfer coefficients on blades are corrected using a 
quasi-3D thermal-hydraulic model with the blade 
unsteady surface temperatures measured by the 
Thermovision system. External boundary conditions are 
corrected using the blade base surface temperatures 
measured by thermocouples on a hot static rig. The final 
identification of the models is carried out using 
measurements of the gas temperature distribution within 
the rotating blade passage, and the measured blade 
external surface temperature in the engine. 

Introduction 

With constantly increasing demands for engines 
maneuverability there is a resulting increase in the 
hostility of the internal engine environment. These very 
important problems inhibit turbine reliability for all 
operating regimes. From reference [1], in 40% of the 
cases tested, the hot section failures in the engine 
occured on the working turbine blades. In aviation 
engines, failure of turbine blades occurs primarily under 
transient operating conditions. Because of this problem, 
thermal - stress blade predictions must be available for 
all flight regimes. 

Predictions of static strength, fatigue life, and 
stator-rotor clearances are limited by the accuracy of 
calculation of the steady and unsteady temperature fields 
in turbine engines. Currently, the only means for 
obtaining enough reliable data for these temperature 
calculations is through the use of termal-hydraulic 
models. Model validation and parameter specification 
are carried out through measurements on models, rigs, 
and engines. 

1.1. Model identification for the blade profile 

1.2. Methods of calculation 

The flow regime and corresponding heat transfer 
in the core flow and in the cooling systems of turbine 
blades are complex. Because of the lack of reliable 
turbulent models and insufficient computing power, 
local heat transfer coefficients can not be accurately 
defined by computations alone. Experimental 
explorations of gas heat transfer coefficients on blades 
are made primarily on static rigs. Such explorations 
have taken place under rotating conditions, usually 
during stage design and development. Transfer of 
results from the static tests to the dynamic tests shows 
that it is impossible to guarantee the determination of 
heat transfer coefficients to high accuracy. Furthermore, 
these experimental explorations are implemented, as a 
rule, for a limited number of points, which presently do 
not satisfy demands for design. 

Heat transfer coefficients in cooling system 
passages are usually explored in models. In a mojority 
of the cases reviewed, results obtained from actual 
operating machines raised certain problems with respect 
to measured and predicted operation. 

In Russia, the Zn - MATI method is widely 
implemented for the experimental determination of heat 
transfer coefficients [2, 3]. Heat exchange conditions are 
correlated to the height of a pure metal (Zn) crust, that 
has hardened on the external blade surface. The crust is 
formed by plunging the blade in pure molten metal 
(Zn). Crystallization takes place while air flows in 
cooling passages. Convective cooling occurs across 
moving boundaries. Here, a difficult problem is 
presented. The calculated heat transfer coefficient must 
be related to the boundary between liquid and solid Zn. 
Therefore, it is necessary to numerically compute the 
heat transfer to the blade cooling system. 

The gas total temperature in the relative frame of a 
blade surface profil can be defined reliably only by 
direct temperature measurement. For example, the heat 
transfer coefficients on an uncooled blade can be 
determined with the help of MMTC (measuring 
maximum temperature crystallized), thermopaints and 

Paper presented at an AGARD Lecture Series on 
"Mathematical Models of Gas Turbine Engines and their Components", December 1994. 
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other methods. These techniques are implemented in 
low temperature flow regimes. 

Taking into account all the difficulties, more exact 
heat transfer coefficients can be defined on blade 
surfaces under working conditions through complex 
calculation and experimental observation in two stages: 

First stage (static rig exploration). 

- Working from the blade cooling system hydraulic 
model, a comparison is made of calculated results and 
experimental data from tests in water and tests in air. 

- Blade cooling passage profil heat transfer 
coefficients are determined with solutions obtained from 
the methode of liquid Zn crystallization (Zn - MATI). 

- Gas heat transfer coefficients are determined by 
measuring the blade wall temperature during thermal 
cycling (for example by the "thin body method"). 

- Boundary conditions are checked and specified 
by comparing blade profde calculation results obtained 
by the quasi three-dimensional model and 
thermometering results in real blade static rigs 
(convection - film cooling) and blades with closed 
injection holes. 

Second stage (dynamic explorations). 

- Gas temperature measurements are taken in the 
relative frame on the blade surface profde with no 
cooling 

- Blade profde gas temperature measurements by 
MMTC sensing elements and other methods are taken. 

- A series of temperature field parametric 
calculations on the blade profde (quasi three- 
dimensional model) is conducted with boundary 
conditions as measured under real conditions in static 
rig experiments, and compared with calculation results 
and thermometering. 

- Analysis of the calculations compared with 
experimental blade profile temperature is performed. 

- The blade profde heat state models in the above 
calculations are based on quasi three-dimensional and 
three-dimensional thermal hydraulic models. 

1.3. Methods of defining local heat transfer 
coefficients in real turbine cooling passages 

makes it more difficult to properly design the cooling 
system and extend blade life. 

In CIAM, the local heat transfer coefficients inside 
the blade passage are defined based on the "Zn - MATI" 
method, with the quasi three-dimensional thermal 
hydraulic model of the blade. During cooling of the 
melted Zn the temperature drops until the liquid-solid 
phase change point is reached. At the phase conversion 
surface, the temperature remains constant. As the 
surface moves during the phase change, the latent heat 
of the liquid-solid phase change is evolved. For 
definition of the separation boundary between the solid 
and the liquid Zn phases, a standard finite element 
methode for the solution of the unsteady heat transfer 
equation is used. Inside the cooling passages, convective 
heat transfer boundary conditions are applied. However, 
in this solution, an effective heat capacity c of Zn must 
be used. 

c = C + q§(A) 
The introduction of the effective heat capacity 

means that the process of crystallization takes place over 
a temperature interval. 

For air mass flow in the blade's passages, the heat 
transfer coefficients are verified if the boundaries of 
crystallization coincide with experimental data for the 
entire blade profile. 

At the present time, a more informative method of 
defining the local heat transfer characteristics inside the 
blade passages (or other experimental objects) is used. 

This method, the Thermovision system, is based 
on a computational analyze of experimental data. 
During the calculation, the heat transfer coefficients are 
varied on separate boundaries. The unsteady blade 
surface temperature field is solved by the conjugate 
quasi three-dimensional technique. 

Mode of study: The blades surface was covered 
with a special paint with a known emissivity. The blade 
was then heated to 300-350°C. After heating, cooled air 
(temperature 20°C) was quickly pumped trough the 
blade passages. The unsteady temperature of the 
external suction and pressure sides of the blade were 
measured by the Thermovision system (AGA - 782) 
with a frequency of one measurement set per second. 
The air mass flow was continuously recorded. In 
comparison with control thermocouples, the error of the 
unsteady temperature field measurement by the 
Thermovision system did not exceed +1-3%. 

The turbine blade cooling system performance (for 
example, the heat transfer coefficients inside passages) 
are defined as functions of known criteria, and using 
typical average heat exchange characteristics with 
available models. 

Because of the complex flow in the cooling 
passages (turning, mixing and separation), their exist 
geometric differences between the blade and the model. 
Such discrepancies can cause a large difference between 
the blade's actual heat state and that calculated. This 

1.4. Measurings of gas and blade temperature in 
engine 

The experimental determination of the heat state 
in gas turbine engines was worked out at IAE by 
T.A.Kurchatova sensitive elements MMTC(measuring 
maximum temperature crystallized) [4]. The IAE 
application has several advantages : There are no 
congesting wires, small surfaces may be measured, and 
the maximum temperature can be measured. With the 



9-3 

help of MMTC, measurements of gas temperature, 
cooling air temperature in the small cooling passages of 
the blades, and the surface temperature of cooled blades 
is possible. The experience of the MMTC application 
has shown that data obtained under real engine 
conditions, without recalculation or simulation of the 
gas flow, can be used to understand the processes of the 
flow in turbine's gas channel. 

1.5. Comparison of calculation and experimental 
data by blade's heat state 

Consider a turbine blade with a cyclon matrix 
cooling system. The blade geometric and hydraulic 
models and the finite element grid for the blade middle 
section are shown in Fig 1. 

The blade profile is given in 9 sections. Every 
section consists of 5 subregions. For example, the fifth 
section (middle) consists of the subregions numbered 
from 21 to 25. Subregions 23 and 24 represent the 
simulated heat transfer at the inlet and the exit of the 
cyclone passage, and subregion 25 represents the 
simulated heat transfer in the finned passages of the 
trailing edge. The finite element grid of the blade profile 
has 2278 boundary elements. The common number of 
subregions is 45, where 24 of these subregions represent 
heat sources. 

The hydraulic model describes the blade cooling 
systems (i.e., that part of the hydraulic network 
appropriate to cooling). The regular part (matrices) of 
the hydraulic network is automatically generated by the 
model. Simultaneously, the blade sections and the 
calculated areas are branched and the hydraulic 
diameter cross sections of passages in the matrices are 
established. 

Generation of irregular hydraulic branches is 
implemented in a graphic dialogue regime. Hydraulic 
resistance of radial passages is defined as 

S = 
r 

where 
K = 10 ■ 
passage. 
A, =0.04 

coefficient, taking into account ribbed 

friction coefficient of smooth passage. 
1, D - length and hydraulic diameter of passage 

The hydraulic resistances in matrix passages were 
calculeted setting K = 1. Hydraulic branch resistance at 
the entrance and exit of the matrix passage are \ = 0.7 

and ^ = 0.92, respectively. 
Resistances to air mass flow between the matrix 

passages on the blade pressure and suction sides are 
't, — 30. Passages resistances on the entrance and the 

exit from the cyclone cavity are ^ = 0.65 and ^ = 1.8, 
respectively. Comparison of the calculations and the 
experimental mass flow characteristics of the blade 
cooling system show good agreement. The air mass flow 

through blades was calculated to be ax = 2.9 (0.8% of 
which is through the cyclone). 

For the calculation of the heat transfer coefficients 
in the blade cooling system passages, well-known 
experimental correlations were used. Thus, in the 
cyclone cavity on the blade leading edge, surface 
correlations for a single jet impingement configuration 
[5] were used. This application has been confirmed by . 
experiments (V. Saharov, CIAM). For other passages, 
the formula for heat transfer in turbulent regimes can be 
used with corrections to the entrance region of the flow, 
or roughness (passages with ribs). 

For passages with multiple ribs (K = 2.2), the 
calculation is made at the minimum section 
(A.Trishkin, CIAM). Figure 2 shows the thickness of 
the Zn crust (mid-span), distribution from the Zn-MATI 
method with closed injection holes in cyclone passage. 
Agreement of calculated heat transfer coefficients 
increased by 10-20% in matrix passages. This was 
determined by taking into account the entrance region of 
the flow in the passage, K = f(L /D). 

It is very important to say that the calculation of 
the heat transfer coefficients in matrix passages was 
implemented for air mass flow values not confirmed by 
direct measurements. Only the inlet and exit air mass 
flow values were measured. 

As we said before, the gas temperature radial 
distribution in front of the blade significantly changes in 
the blade passage. Considering the blade, Figure 3 
shows the temperatures that were measured in rotating 
conditions on an engine. In three points (on leading and 
trailing edges of the pressure and the suction sides) of 
some sections of the non-cooled blade, the blade wall 
temperature was measured with the help of MMTC 
(V.Filippov). The gas temperature distribution on the 
pressure and the suction side were obtained from the 
three-dimensional heat conduction equation. Due to the 
heat flowing from the blade, the maximum difference of 
the blade metal wall temperature from the local gas 
recovery temperature is 10 - 15K. 

Results of this measurements were used to obtain 
the gas temperature distribution in the passage between 
blades for the base flow regime. 

Calculation of the film cooling on the blade 
suction side and gas heat transfer coefficients were 
conducted using the Laval number distribution A,(s) 
along the blade section contour. Laval number 
distributions for root, middle and tip sections are shown 
in Figure 4. These results were obtained assuming 
inviscid three-dimensional flow. 

Calculation of the local gas heat transfer 
coefficients was implemented while solving two- 
dimensional equations of boundary layer using an 
algebraic turbulent model (V. Sovershennyi). Figure 5 
shows  the  comparison  of calculated and measured 
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values of gas heat transfer coefficients on the static test 
rig. The measurement of the heat transfer coefficients 
was implemented with the help of the unsteady "thin 
body" method for the middle section of the blade 
(VPochuev, CIAM). 

In Figure 6, some temperature calculation fields 
are shown for various blade sections on the external 
surface of the blade profde. Here the temperatures 
measured with the MMTC technique are also shown on 
some points of the blade. 
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Fia-1 Hydraulic and geometrical models of 
cooled matrix blade. 
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Perspective problems of gas turbine engines simulation 

by 
Prof. M. Ja. Ivanov 

CIAM (Central Institute of Aviation Motors) 
2, Aviamotomaya St., 

Moscow, Russia, 111250 

Abstract 

The purpose of the last lecture is to present the 
activity of CIAM in the field of the development of 
Computer Turbojet Test Technology based on aero- 
engine models of high 3D level. Using this technology 
the aero - engine design may be transformed into new 
quality. It's the predictions of steady and transient 
working processes, performances and efficiency on the 
first stage of engine design ( without the real metal 
engine testing). These aero-engine models must 
accompany the whole engine life - from design to 
production and use on aircraft. 

Introduction 

The preceding lectures and also the quoted 
publications of last years have illustrated the modern 
advances of mathematical simulation of the physical 
processes in gas turbine engines and its components. In 
this lecture we'll formulate the nearest perspectives of 
development and application of this research direction. 

First of all we would like to emphasize that now 
there is a real base of good enough computer test 
facilities to work out processes and performances 
investigations of different type of aero-engines (turbojet, 
turbofan, turboshaft and oth.). CIAM is realizing the 
development of modern Computer Turbojet Test 
Technology (CT3) - to create and validate new 
simulation software procedure to design and analyse 
aircraft engines. As a result of this CT3 program will be 
the creation and verification of the high levels computer 
test facilities for whole gas turbine engines. The CT3 

system based on 2D and 3D simulations of 
aerodynamics, heat transfer and stress problems is 
described in this lecture. 

The CT3 will allow high accuracy to simulate the 
real working processes on various regimes (take off, 
cruise, idling, autorotation and oth.) and influence of 
major parameters on engine efficiency. It will be a very 
convenient tool for engine performances prediction, 
such as the speed-altitude or part-load regime 
performances. The CT3 will determine also the 
equilibrium running lines, simulate different transient 
regimes. Wide application of the CT3 system on design 
engine stages allows to decrease greatly the time and 
cost of the engine development. 

Another CT3 application will be non traditional 
methods of engine control systems. These new 
regulation methods will be based on the prediction of 
initial stages of nonstable engine working regimes 
(starting, surge, burning put or out and oth.) and allow 
to prevent nonstable processes at the initial steps. 

In the frame of the considering research the special 
software system of scientific analysis and visualization 
is developed. This system conditionally named 
Scientific Operating System (SOS) allows us to improve 
greatly our analysis capabilities, as well as the ability to 
view portions or all of the numerical data, to have a 
static and animated 2D and 3D pictures in color 
presentation. 

The achieved progress in aero-engine physical 
processes simulation may be used to design gas turbine 
engines and units of non aircraft application. As 
examples, in this lecture some results will be presented 
for a big steam turbine units for atomic power stations. 

The computer 3D engine model must accompany 
the whole engine life - from design to production, 
uprated and modified versions, and to exploitation on 
aircraft. Estimation of necessary computer requirements 
for the realization of the CT3 shows us the first stage of 
CT3 may be developed using wide spread work stations 
with RISC processors. 

1. Computer Turbojet Test Technology 

CIAM owns a unique test facilities for research of 
real aero-engines and its components. Aircraft engines 
for different applications can be tested in simulated 
flight conditions up to altitude H « 20 km and flight 
Mach number M < 3. There are special rigs for testing 
small turbojet and turboshaft engines under simulated 
flight altitude - speed and climatic conditions and for 
gas dynamic, heat transfer and strength testing of gas 
turbine engine components. 

In this section we consider the creation of the 
Computer Turbojet (Turbofan, Turboshaft and other 
turboengine) Test Technology - the CT3 system and its 
performances. The CT3 system must increase greatly 
the possibilities of our natural test rigs for researches of 
aircraft engines and its components. 

We shall present the main peculiarities of 
developing the CT3 system. It is based on complex 2D 
and 3D mathematical simulations of aerodynamics, heat 
transfer and stress problems, described in this lecture . 

Paper presented at an AGARD Lecture Series on 
"Mathematical Models of Gas Turbine Engines and their Components", December 1994. 
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After the thermodynamic design, when we have the 
drafted project, the CT3 system is included with the 
schematic diagram showed in fig.l. First of all CT3 

allows to carry out the detail aerodynamic design of the 
whole gas turbine engine system. Here it's emphasized 
the main difference from traditional ways of engine 
system design. 

Up to the present time the mathematical engine 
simulation used ID and quasi-2D models [1-4], which 
demanded a long time for verification testing and 
development. Application of very accurate 2D and 3D 
models of the CT3 system allows to get more optimal 
aerodynamic project of engine system without 
continuous real engine testing. 

On the first step CT3 applies for major steady 
regime simulations (the cruise and take off regimes). 
Here we can accurate simulate the equilibrium running 
points for a series of operating conditions and obtain 
performance curves of power output or thrust, and 
specific fuel consumption, when all components are 
linked together in an engine. 

Analyzing these regimes, we can design a better 
variant of the working project and study off-design 
performances. Beginning from the off-design steady 
regimes (reduced and maximum powers, idling, 
autorotation and oth.) and having a better next variant 
of the working project we must analyze the very 
important off-design unsteady regimes (starting, surge, 
burning put or out and oth.). As a result of detail 
aerodynamic engine analysis we are very close to the 
optimum working engine flow passage project. 

After that, also with the help of the perspective CT3 

system we can carry out the mechanical detail analysis. 
On this step of design, there will be carefully solved heat 
transfer, stress, vibration, reliability and resource 
problems. Here we will deal with the finished engine 
project, which is used for the manufacturing of 
experience engine. The next step of wide using of the 
CT3 system will be an accompaniment of real ground 
and flight engine testing and its certification. The CT3 

system must raise the engine testing to the new high 
quality level, where we will have essentially more 
information on all test regimes. 

Lastly, the CT3 system will accompany also the 
engine production, exploitation and development of 
uprated and modified engine versions. We would like to 
emphasize once more that the CT3 system must 
accompany the whole engine life and will be similar to 
an engine passport. 

2. Scientific Operating System 

When complex multidimensional problems are 
solved, the computer memory contains a large volume of 
numerical information. It's necessary to fulfill quickly 
enough the careful analysis of inputting and obtaining 
information with the help of special techniques. This 
analysis must be based on the new artificial intellectual 
systems and the modern graphic visualization systems, 
which are to be developed for work stations and 
personal computers. 

At the time of writing, a new research group has 
been organized in CIAM headed by Dr. A.P.Tchiaston 
for the development of special software system of 
scientific analysis and visualization. This system 
conditionally named Scientific Operating System (SOS) 
will allow us to improve greatly our analysis 
capabilities. Shortly we would like to present the major 
peculiarities of this system. 

At the first stage, the input information of complex 
3D problems must be analyzed. The careful control of 
all inputted 3D objects and surfaces must be fulfilled. A 
researcher has the possibility to view any portion or the 
whole object of investigation. Fig.2-5 shows the SOS 
application for presentation of some pictures of gas 
turbine engine, its component and part of surfaces. In 
the same way, all initial problem data and boundary 
conditions must be verified. 

At the second stage, the SOS application allows us 
to control the used computational grids. Fig.6,7 show 
the typical examples of these grids. 

At the next stage, a researcher must have the 
possibility to analyze the computational process 
(convergence history, stability, accuracy and so on). 

The main stage of SOS application is the scientific 
analysis of obtaining numerical data using the modern 
graphic visualization systems. We present here some 
typical pictures of such visualization and the special 
videofilm. The SOS system allows us to analyze in a 
very convenient form a steady and transient process of 
gas turbine engines and its components. A static and 
animated 2D and 3D pictures in color presentation are 
very impressive and can help obtain better solutions and 
give concrete recommendations for the engine design. 

3. Some application for steam turbines design 

High level of computational simulations developed 
in the aircraft engine design can be applied to construct 
and modify road and marine gas turbine engines, steam 
and gas turbine units of stationary power engineering. 

One of the typical examples of this problem may be 
the increase of a big steam turbine efficiency. In many 
cases the detail study of using and producing power 
turbine shows the essential reserves in the increase of 
their aerodynamic efficiencies. In this section some 
typical results for redesign steam turbine stage are 
presented. Some real effects of multiphase phenomena 
in transonic flow are taken into account. 

First, we consider the efficiency increase of the last 
stage of a big steam turbine (the low pressure cylinder). 
This stage had the meridional shape and radial blades of 
a vane and rotor as showed in fig. 10, where also present 
pressure contour lines on suction sides of blades. With 
the help of 3D aerodynamic efficiency simulation was 
redesigned this last stage and proposed the new 3D 
bowed blades (fig. 11). The new vane has blades with the 
axial bow in the upstream direction (upper part of 
blades) and with the radial bow near the hub. Fig. 12 
and 13 show correspondently reaction distributions from 
hub to tip for major regime and two 
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partial regimes (mass flow ratio G = 0.5 and 

G = 0.75). There are no negative reaction for the 
modified stage. The modified stage has essentially lower 
total pressure losses and the stage efficiency increases 
on 2%. Details of showed researches were published in 
papers [5,6]. These examples have been demonstrated as 
one of the perspective problem of turbine simulation 
using complex 3D blade form in turbines for stationary 
power engineering. 

The next perspective problem is the development of 
steam turbine simulation with real effects (the 
multiphase phenomena, condensation and oth.). 

Gasdynamic multiphase phenomena in transonic 
flows caused by the phase transitions and strong 
interaction between phases is important for many 
practice problems such as steam turbines and nozzles, 
cryogenic turbomachinery, streams with dispended 
particles and aerosols. Below some numerical results are 
presented for multiphase inviscid problems based on 
Euler conservation equations for gas phase coupled with 
the equations of classical nucleation theory and 
microscopic or macroscopic droplet grouth laws. Taking 
into account heat release, phase transition and strong 
interphase interactions such effects of high sensitive 
reaction as "condensation shock", periodic shock 
oscillations can be explained. Corresponding simulation 
of 2D and 3D multiphase flow was elaborated in CIAM 
by Drs. Ju. S. Kosolapov and A. S. Liberson [7,8]. 

Fig. 14 shows pressure contour lines (with interval 

Ap = 0.02) for steam flow in cascade C-9012A with 

Mach number M2 = 1.2. Condensation shock is 
pointed out by arrow. Correspondent distribution of 

pressure 8 = p / p0 along the section side is presented 
by Fig. 15 (solid line), compared with experimental data 
("crosses"). A good agreement in almost all range, 
including condensation shock proves to be except at the 
trailing edge, where the viscous effects are significant. 
Dotted line depicts overcooling degree - AT, upper 

continious thin line - rate of vapour ß. It should be 
noticed that calculations by pure gas methodology 
without phase nonequilibrium effects lead to the 
essential errors in distribution of parameters below 
section with condensation shock effects. Fig. 16 shows 
pressure countour lines for steam flow in cascade with 

M2 = 1.6 and evolution of pressure (solid line) and 
rate of vapour (dotted line) along the suction side and 
correspondent line of periodicity. System of trailing 
edge shocks provides discontiniously evolution of 
stream getting more and more dry up with every current 
classical discontinity breakdown. 

Fig. 17 shows the mass concentration of the vapour 

phase for M2 =1.2 and 1.6. Notice that the vapour 
concentration is increased for higher Mach number. 

In order to illustrate the accuracy of the developed 
method the steady flows of a spontaneously condensing 
water vapour in the plane nozzle were calculated [9]. 

Three regimes with the following total parameters 
at the inlet of the nozzle were examinated: 

p0 = 0.7839  bar (common to all regimes), 

T0 = 370 K (regime 1), T0 = 373 K (regime 2), 

T0 = 377 K (regime 3, pure condensation shock). 
The nozzle flows are shown in fig. 18 for regime 1 

Mach number contour lines (AM = 0.025) (fig. 18,a), 
for regime 2 (fig. 18,b) and for regime 3 (fig. 18,c). 
There are the shock and subsonic flow behind it for 
regime 1, the local shock and subsonic region for 
regime 2 and only the condensation jump for regime 3. 

The pressure distributions s = p/p0 along the 
axis of nozzle are shown in fig. 19 for regimes 1,2,3. 

The crosses show the experimental data by D. 
Barshdorf [9]. Here we would like to finish the results 
presentation. 

Conclusion 

To direct readers' attention to important problems of 
the present Lecture Series we would like to formulate 
the following question: Can we create the gas turbine 
engine test cell, which allows us to measure all 
parameters and to observe going processes in any 
interesting point of flow passage? Some results of the 
Lecture Series show the principal possibility of such test 
cell creation. We have been convinced that Computer 
Turbojet Test Technology (CT3), based on the accurate 
3D simulation of engine processes, can get results with 
more higher accuracy, then only experimental 
measurements. Let the real measurements of having 
limit points number (usually, about a few hundreds) 
coincide in the limits of demanding accuracy with their 
calculated values on the identified mathematical cell 
CT3. In this case we can with a sufficient confidence 
believe that the united system of real and mathematical 
(CT3) cells presents itself the new high level quality test 
facility measuring points number, equaled the points 
number of numerical grid, using in the CT3 system. 
Here in any point of measurements (in any 
computational cell) are registered all the parameters (for 
example, in a flow passage points - pressure, 
temperature, density and three component of velocity). 
At that time the proposed system allows to do 
transparent the all engine and to observe the research 
physical process in any region, in any point on display 
using impressive color graphic system. This can be 
related as well is gasdynamic process and also to heat 
transfer, stress, burning, deformation processes. 

The CT3 system to develop an engine or a turbine 
power unit can essentially influence over their 
competition capacity. There is open the new 
advertisement possibilities. So all important 
performances can be presented very impressively using 
the transparent computer model. Special visual 
demonstration of the best sides of the article will carry 
out undoubly to a growth of the competition capacity. 
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Moreover, the supply of engine or unit with its color kondensation reinen wasserdampfes in lavaldusen. 
3D model will allow to get essentially clearer and more Fossch. Ing.-Wes. 1971, Vol. 37, No. 5, pp. 146-157. 
comfortable instructions, description of components and 
going processes. Simulation with the help of CT3 

system of emergency situations will allow also to study 
the servicing personnel and to avoid the possible 
mistakes when emergency situations will be arised. 

The enormous improvements in computing speed 
and storage capacity will have a major impact on widely 
spread of similar CT3 systems in engines and units 
design and exploitation. 
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Fig. 10    Mach number contour lines on suction side for the initial variant of last stage of steam turbine. 

Fig. 11    Mach number contour lines on suction side. Modified variant. 
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Fig. 14     Steam flow in cascade C-9012A. Pressure contour lines (Ap = 0.02), M2 - 1.2 
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Fig. 17     Vapour mass concentration contour lines: 

a) M2=1.2,   b) M2 = 1.6 
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Fig. 18     Steam flow in nozzle: 

a)T0=370K,   b)    T0 = 373 K  c) T0 = 377 K 
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Fig. 19     Pressure distributions for regime 1,2,3: 
       numerical results 
++++      experimental data [9]. 
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